This makes DwarfRegNum to accept list of numbers instead.
Added three different "flavours", but only slightly tested on x86-32/linux.
Please check another subtargets if possible,
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@43997 91177308-0d34-0410-b5e6-96231b3b80d8
dealing with types whose size & alignment are
different on different subtargets. Use it for x86 f80.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@43988 91177308-0d34-0410-b5e6-96231b3b80d8
the one that takes an operand list instead of explicit
operands. There is one left though, the more interesting
one :)
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@43290 91177308-0d34-0410-b5e6-96231b3b80d8
take a deleted nodes vector, instead of requiring it.
One more significant change: Implement the start of a legalizer that
just works on types. This legalizer is designed to run before the
operation legalizer and ensure just that the input dag is transformed
into an output dag whose operand and result types are all legal, even
if the operations on those types are not.
This design/impl has the following advantages:
1. When finished, this will *significantly* reduce the amount of code in
LegalizeDAG.cpp. It will remove all the code related to promotion and
expansion as well as splitting and scalarizing vectors.
2. The new code is very simple, idiomatic, and modular: unlike
LegalizeDAG.cpp, it has no 3000 line long functions. :)
3. The implementation is completely iterative instead of recursive, good
for hacking on large dags without blowing out your stack.
4. The implementation updates nodes in place when possible instead of
deallocating and reallocating the entire graph that points to some
mutated node.
5. The code nicely separates out handling of operations with invalid
results from operations with invalid operands, making some cases
simpler and easier to understand.
6. The new -debug-only=legalize-types option is very very handy :),
allowing you to easily understand what legalize types is doing.
This is not yet done. Until the ifdef added to SelectionDAGISel.cpp is
enabled, this does nothing. However, this code is sufficient to legalize
all of the code in 186.crafty, olden and freebench on an x86 machine. The
biggest issues are:
1. Vectors aren't implemented at all yet
2. SoftFP is a mess, I need to talk to Evan about it.
3. No lowering to libcalls is implemented yet.
4. Various operations are missing etc.
5. There are FIXME's for stuff I hax0r'd out, like softfp.
Hey, at least it is a step in the right direction :). If you'd like to help,
just enable the #ifdef in SelectionDAGISel.cpp and compile code with it. If
this explodes it will tell you what needs to be implemented. Help is
certainly appreciated.
Once this goes in, we can do three things:
1. Add a new pass of dag combine between the "type legalizer" and "operation
legalizer" passes. This will let us catch some long-standing isel issues
that we miss because operation legalization often obfuscates the dag with
target-specific nodes.
2. We can rip out all of the type legalization code from LegalizeDAG.cpp,
making it much smaller and simpler. When that happens we can then
reimplement the core functionality left in it in a much more efficient and
non-recursive way.
3. Once the whole legalizer is non-recursive, we can implement whole-function
selectiondags maybe...
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@42981 91177308-0d34-0410-b5e6-96231b3b80d8
1.
[(set GR32:$dst, (add GR32:$src1, GR32:$src2)),
(modify EFLAGS)]
This indicates the source pattern expects the instruction would produce 2 values. The first is the result of the addition. The second is an implicit definition in register EFLAGS.
2.
def : Pat<(parallel (addc GR32:$src1, GR32:$src2), (modify EFLAGS)), ()>
Similar to #1 except this is used for def : Pat patterns.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@41897 91177308-0d34-0410-b5e6-96231b3b80d8
This also changes the syntax for llvm.bswap, llvm.part.set, llvm.part.select, and llvm.ct* intrinsics. They are automatically upgraded by both the LLVM ASM reader and the bitcode reader. The test cases have been updated, with special tests added to ensure the automatic upgrading is supported.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@40807 91177308-0d34-0410-b5e6-96231b3b80d8
This commit fixes two things. One is a pair of VStudio compiler errors stemming from variables
which defined within the for loop statement and also within the body of the for loop. I fixed these
by renaming one of the two variables. Additionally, I've made the Function*->ExFunc map in
ExternalFunctions.cpp a ManagedStatic object, so that cleanup will be done on llvm_shutdown. In repeated
uses of the interpreter, where the same Function* address may get used for completely differnet functions,
this was causing a crash.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@40558 91177308-0d34-0410-b5e6-96231b3b80d8