This fixes a regression intruced by r198113.
Revision r198113 introduced an algorithm that tries to fold a vector shift
by immediate count into a build_vector if the input vector is a known vector
of constants.
However the algorithm only worked under the assumption that the input vector
type and the shift type are exactly the same.
This patch disables the folding of vector shift by immediate count if the
input vector type and the shift value type are not the same.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@199213 91177308-0d34-0410-b5e6-96231b3b80d8
Representing dllexport/dllimport as distinct linkage types prevents using
these attributes on templates and inline functions.
Instead of introducing further mixed linkage types to include linkonce and
weak ODR, the old import/export linkage types are replaced with a new
separate visibility-like specifier:
define available_externally dllimport void @f() {}
@Var = dllexport global i32 1, align 4
Linkage for dllexported globals and functions is now equal to their linkage
without dllexport. Imported globals and functions must be either
declarations with external linkage, or definitions with
AvailableExternallyLinkage.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@199204 91177308-0d34-0410-b5e6-96231b3b80d8
This should allow SSE instructions to be encoded correctly in 16-bit mode which r198586 probably broke.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@199193 91177308-0d34-0410-b5e6-96231b3b80d8
The already allocatable DPair superclass contains odd-even D register
pair in addition to the even-odd pairs in the QPR register class. There
is no reason to constrain the set of D register pairs that can be used
for NEON values. Any NEON instructions that require a Q register will
automatically constrain the register class to QPR.
The allocation order for DPair begins with the QPR registers, so
register allocation is unlikely to change much.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@199186 91177308-0d34-0410-b5e6-96231b3b80d8
This will allow it to be called from target independent parts of the main
streamer that don't know if there is a registered target streamer or not. This
in turn will allow targets to perform extra actions at specified points in the
interface: add extra flags for some labels, extra work during finalization, etc.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@199174 91177308-0d34-0410-b5e6-96231b3b80d8
The issue is caused when Post-RA scheduler reorders a bundle instruction
(IT block). However, it only flips the CPSR liveness of the bundle instruction,
leaves the instructions inside the bundle unchanged, which causes inconstancy and crashes
Thumb2SizeReduction.cpp::ReduceMBB().
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@199127 91177308-0d34-0410-b5e6-96231b3b80d8
APInt only knows how to compare values with the same BitWidth and asserts
in all other cases.
With this fix, function PerformORCombine does not use the APInt equality
operator if the APInt values returned by 'isConstantSplat' differ in BitWidth.
In that case they are different and no comparison is needed.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@199119 91177308-0d34-0410-b5e6-96231b3b80d8
...into (ashr (shl (anyext X), ...), ...), which requires one fewer
instruction. The (anyext X) can sometimes be simplified too.
I didn't do this in DAGCombiner because widening shifts isn't a win
on all targets.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@199114 91177308-0d34-0410-b5e6-96231b3b80d8
Previously we only used GPR for the destination placeholder in "ldr rD, [pc,
incorrect codegen under the integrated assembler.
This should fix both issues (which probably only affect MachO targets at the
moment).
rdar://problem/15800156
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@199108 91177308-0d34-0410-b5e6-96231b3b80d8
This finishes the job started in r198756, and creates separate opcodes for
64-bit vs. 32-bit versions of the rest of the RET instructions too.
LRETL/LRETQ are interesting... I can't see any justification for their
existence in the SDM. There should be no 'LRETL' in 64-bit mode, and no
need for a REX.W prefix for LRETQ. But this is what GAS does, and my
Sandybridge CPU and an Opteron 6376 concur when tested as follows:
asm __volatile__("pushq $0x1234\nmovq $0x33,%rax\nsalq $32,%rax\norq $1f,%rax\npushq %rax\nlretl $8\n1:");
asm __volatile__("pushq $1234\npushq $0x33\npushq $1f\nlretq $8\n1:");
asm __volatile__("pushq $0x33\npushq $1f\nlretq\n1:");
asm __volatile__("pushq $0x1234\npushq $0x33\npushq $1f\nlretq $8\n1:");
cf. PR8592 and commit r118903, which added LRETQ. I only added LRETIQ to
match it.
I don't quite understand how the Intel syntax parsing for ret
instructions is working, despite r154468 allegedly fixing it. Aren't the
explicitly sized 'retw', 'retd' and 'retq' supposed to work? I have at
least made the 'lretq' work with (and indeed *require*) the 'q'.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@199106 91177308-0d34-0410-b5e6-96231b3b80d8
can be used by both the new pass manager and the old.
This removes it from any of the virtual mess of the pass interfaces and
lets it derive cleanly from the DominatorTreeBase<> template. In turn,
tons of boilerplate interface can be nuked and it turns into a very
straightforward extension of the base DominatorTree interface.
The old analysis pass is now a simple wrapper. The names and style of
this split should match the split between CallGraph and
CallGraphWrapperPass. All of the users of DominatorTree have been
updated to match using many of the same tricks as with CallGraph. The
goal is that the common type remains the resulting DominatorTree rather
than the pass. This will make subsequent work toward the new pass
manager significantly easier.
Also in numerous places things became cleaner because I switched from
re-running the pass (!!! mid way through some other passes run!!!) to
directly recomputing the domtree.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@199104 91177308-0d34-0410-b5e6-96231b3b80d8
trees into the Support library.
These are all expressed in terms of the generic GraphTraits and CFG,
with no reliance on any concrete IR types. Putting them in support
clarifies that and makes the fact that the static analyzer in Clang uses
them much more sane. When moving the Dominators.h file into the IR
library I claimed that this was the right home for it but not something
I planned to work on. Oops.
So why am I doing this? It happens to be one step toward breaking the
requirement that IR verification can only be performed from inside of
a pass context, which completely blocks the implementation of
verification for the new pass manager infrastructure. Fixing it will
also allow removing the concept of the "preverify" step (WTF???) and
allow the verifier to cleanly flag functions which fail verification in
a way that precludes even computing dominance information. Currently,
that results in a fatal error even when you ask the verifier to not
fatally error. It's awesome like that.
The yak shaving will continue...
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@199095 91177308-0d34-0410-b5e6-96231b3b80d8
directory. These passes are already defined in the IR library, and it
doesn't make any sense to have the headers in Analysis.
Long term, I think there is going to be a much better way to divide
these matters. The dominators code should be fully separated into the
abstract graph algorithm and have that put in Support where it becomes
obvious that evn Clang's CFGBlock's can use it. Then the verifier can
manually construct dominance information from the Support-driven
interface while the Analysis library can provide a pass which both
caches, reconstructs, and supports a nice update API.
But those are very long term, and so I don't want to leave the really
confusing structure until that day arrives.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@199082 91177308-0d34-0410-b5e6-96231b3b80d8
This patch covered 2 more scenarios:
1. Two operands of shuffle_vector are the same, like
%shuffle.i = shufflevector <8 x i8> %a, <8 x i8> %a, <8 x i32> <i32 0, i32 2, i32 4, i32 6, i32 8, i32 10, i32 12, i32 14>
2. One of operands is undef, like
%shuffle.i = shufflevector <8 x i8> %a, <8 x i8> undef, <8 x i32> <i32 0, i32 2, i32 4, i32 6, i32 8, i32 10, i32 12, i32 14>
After this patch, perm instructions will have chance to be emitted instead of lots of INS.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@199069 91177308-0d34-0410-b5e6-96231b3b80d8
The target specific parser should return `false' if the target AsmParser handles
the directive, and `true' if the generic parser should handle the directive.
Many of the target specific directive handlers would `return Error' which does
not follow these semantics. This change simply changes the target specific
routines to conform to the semantis of the ParseDirective correctly.
Conformance to the semantics improves diagnostics emitted for the invalid
directives. X86 is taken as a sample to ensure that multiple diagnostics are
not presented for a single error.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@199068 91177308-0d34-0410-b5e6-96231b3b80d8
Targets like SPARC and MIPS have delay slots and normally bundle the
delay slot instruction with the corresponding terminator.
Teach isBlockOnlyReachableByFallthrough to find any MBB operands on
bundled terminators so SPARC doesn't need to specialize this function.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@199061 91177308-0d34-0410-b5e6-96231b3b80d8
name to match the source file which I got earlier. Update the include
sites. Also modernize the comments in the header to use the more
recommended doxygen style.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@199041 91177308-0d34-0410-b5e6-96231b3b80d8
An improper qualifier would result in a superfluous error due to the parser not
consuming the remainder of the statement. Simply consume the remainder of the
statement to avoid the error.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@199035 91177308-0d34-0410-b5e6-96231b3b80d8
The implicit immediate 0 forms are assembly aliases, not distinct instruction
encodings. Fix the initial implementation introduced in r198914 to an alias to
avoid two separate instruction definitions for the same encoding.
An InstAlias is insufficient in this case as the necessary due to the need to
add a new additional operand for the implicit zero. By using the AsmPsuedoInst,
fall back to the C++ code to transform the instruction to the equivalent
_POST_IMM form, inserting the additional implicit immediate 0.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@199032 91177308-0d34-0410-b5e6-96231b3b80d8
This is different from the argument passing convention which puts the
first float argument in %f1.
With this patch, all returned floats are treated as if the 'inreg' flag
were set. This means multiple float return values get packed in %f0,
%f1, %f2, ...
Note that when returning a struct in registers, clang will set the
'inreg' flag on the return value, so that behavior is unchanged. This
also happens when returning a float _Complex.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@199028 91177308-0d34-0410-b5e6-96231b3b80d8
A 32-bit immediate value can be formed from a constant expression and loaded
into a register. Add support to emit this into an object file. Because this
value is a constant, a relocation must *not* be produced for it.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@199023 91177308-0d34-0410-b5e6-96231b3b80d8
Use separate callee-save masks for XMM and YMM registers for anyregcc on X86 and
select the proper mask depending on the target cpu we compile for.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@198985 91177308-0d34-0410-b5e6-96231b3b80d8
The disassembler would no longer be able to disambiguage between the two
variants (explicit immediate #0 vs implicit, omitted #0) for the ldrt, strt,
ldrbt, strbt mnemonics as both versions indicated the disassembler routine.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@198944 91177308-0d34-0410-b5e6-96231b3b80d8
The GNU assembler supports prefixing the expression with a '#' to indiciate that
the value that is being moved is infact a constant. This improves the
compatibility of the integrated assembler's parser for this.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@198916 91177308-0d34-0410-b5e6-96231b3b80d8
The GNU assembler has an extension that allows for the elision of the paired
register (dt2) for the LDRD and STRD mnemonics. Add support for this in the
assembly parser. Canonicalise the usage during the instruction parsing from
the specified version.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@198915 91177308-0d34-0410-b5e6-96231b3b80d8
The ARM ARM indicates the mnemonics as follows:
ldrbt{<c>}{<q>} <Rt>, [<Rn>], {, #+/-<imm>}
ldrt{<c>}{<q>} <Rt>, [<Rn>] {, #+/-<imm>}
strbt{<c>}{<q>} <Rt>, [<Rn>] {, #<imm>}
strt{<c>}{<q>} <Rt>, [<Rn>] {, #+/-<imm>}
This improves the parser to deal with the implicit immediate 0 for the mnemonics
as per the specification.
Thanks to Joerg Sonnenberger for the tests!
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@198914 91177308-0d34-0410-b5e6-96231b3b80d8
The zext handling added in r197802 wasn't right for RNSBG. This patch
restricts it to ROSBG, RXSBG and RISBG. (The tests for RISBG were added
in r197802 since RISBG was the motivating example.)
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@198862 91177308-0d34-0410-b5e6-96231b3b80d8
operand into the Value interface just like the core print method is.
That gives a more conistent organization to the IR printing interfaces
-- they are all attached to the IR objects themselves. Also, update all
the users.
This removes the 'Writer.h' header which contained only a single function
declaration.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@198836 91177308-0d34-0410-b5e6-96231b3b80d8