This adds back r204781.
Original message:
Aliases are just another name for a position in a file. As such, the
regular symbol resolutions are not applied. For example, given
define void @my_func() {
ret void
}
@my_alias = alias weak void ()* @my_func
@my_alias2 = alias void ()* @my_alias
We produce without this patch:
.weak my_alias
my_alias = my_func
.globl my_alias2
my_alias2 = my_alias
That is, in the resulting ELF file my_alias, my_func and my_alias are
just 3 names pointing to offset 0 of .text. That is *not* the
semantics of IR linking. For example, linking in a
@my_alias = alias void ()* @other_func
would require the strong my_alias to override the weak one and
my_alias2 would end up pointing to other_func.
There is no way to represent that with aliases being just another
name, so the best solution seems to be to just disallow it, converting
a miscompile into an error.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@204934 91177308-0d34-0410-b5e6-96231b3b80d8
This reverts commit r204781.
I will follow up to with msan folks to see what is what they
were trying to do with aliases to weak aliases.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@204784 91177308-0d34-0410-b5e6-96231b3b80d8
Aliases are just another name for a position in a file. As such, the
regular symbol resolutions are not applied. For example, given
define void @my_func() {
ret void
}
@my_alias = alias weak void ()* @my_func
@my_alias2 = alias void ()* @my_alias
We produce without this patch:
.weak my_alias
my_alias = my_func
.globl my_alias2
my_alias2 = my_alias
That is, in the resulting ELF file my_alias, my_func and my_alias are
just 3 names pointing to offset 0 of .text. That is *not* the
semantics of IR linking. For example, linking in a
@my_alias = alias void ()* @other_func
would require the strong my_alias to override the weak one and
my_alias2 would end up pointing to other_func.
There is no way to represent that with aliases being just another
name, so the best solution seems to be to just disallow it, converting
a miscompile into an error.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@204781 91177308-0d34-0410-b5e6-96231b3b80d8
If a function returns a large struct by value return the first 4 words
in registers and the rest on the stack in a location reserved by the
caller. This is needed to support the xC language which supports
functions returning an arbitrary number of return values. This is
r202397 reapplied with a fix to avoid an uninitialized read of a member.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@202414 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
If a function returns a large struct by value return the first 4 words
in registers and the rest on the stack in a location reserved by the
caller. This is needed to support the xC language which supports
functions returning an arbitrary number of return values.
Reviewers: robertlytton
Reviewed By: robertlytton
CC: llvm-commits
Differential Revision: http://llvm-reviews.chandlerc.com/D2889
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@202397 91177308-0d34-0410-b5e6-96231b3b80d8
These instructions ignore the high bits of one of their input operands -
try and use this to simplify the code.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@202394 91177308-0d34-0410-b5e6-96231b3b80d8
The behaviour of the XCore's instruction buffer means that the performance
of the same code sequence can differ depending on whether it starts at a 4
byte aligned address or not. Since we don't model the instruction buffer
in the backend we have no way of knowing for sure if it is beneficial to
word align a specific function. However, in the absence of precise
modelling, it is better on balance to word align functions because:
* It makes a fetch-nop while executing the prologue slightly less likely.
* If we don't word align functions then a small perturbation in one
function can have a dramatic knock on effect. If the size of the function
changes it might change the alignment and therefore the performance of
all the functions that happen to follow it in the binary. This butterfly
effect makes it harder to reason about and measure the performance of
code.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@202163 91177308-0d34-0410-b5e6-96231b3b80d8
Xcore target ABI requires const data that is externally visible
to be handled differently if it has C-language linkage rather than
C++ language linkage.
Clang now emits ".cp.rodata" section information.
All other externally visible constant data will be placed in the DP section.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@201144 91177308-0d34-0410-b5e6-96231b3b80d8
This requires a knowledge of the stack size which is not known until
the frame is complete, hence the need for the XCoreFTAOElim pass
which lowers the XCoreISD::FRAME_TO_ARGS_OFFSET instrution into its
final form.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@198614 91177308-0d34-0410-b5e6-96231b3b80d8
This changes the MachineFrameInfo API to use the new SSPLayoutKind information
produced by the StackProtector pass (instead of a boolean flag) and updates a
few pass dependencies (to preserve the SSP analysis).
The stack layout follows the same approach used prior to this change - i.e.,
only LargeArray stack objects will be placed near the canary and everything
else will be laid out normally. After this change, structures containing large
arrays will also be placed near the canary - a case previously missed by the
old implementation.
Out of tree targets will need to update their usage of
MachineFrameInfo::CreateStackObject to remove the MayNeedSP argument.
The next patch will implement the rules for sspstrong and sspreq. The end goal
is to support ssp-strong stack layout rules.
WIP.
Differential Revision: http://llvm-reviews.chandlerc.com/D2158
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@197653 91177308-0d34-0410-b5e6-96231b3b80d8
When using large code model:
Global objects larger than 'CodeModelLargeSize' bytes are placed in sections named with a trailing ".large"
The folded global address of such objects are lowered into the const pool.
During inspection it was noted that LowerConstantPool() was using a default offset of zero.
A fix was made, but due to only offsets of zero being generated, testing only verifies the change is not detrimental.
Correct the flags emitted for explicitly specified sections.
We assume the size of the object queried by getSectionForConstant() is never greater than CodeModelLargeSize.
To handle greater than CodeModelLargeSize, changes to AsmPrinter would be required.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@196087 91177308-0d34-0410-b5e6-96231b3b80d8
ATOMIC_FENCE is lowered to a compiler barrier which is codegen only. There
is no need to emit an instructions since the XCore provides sequential
consistency.
Original patch by Richard Osborne
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@194464 91177308-0d34-0410-b5e6-96231b3b80d8
This sidesteps a bug in PrescheduleNodesWithMultipleUses() which
does not check if callResources will be affected by the transformation.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@190299 91177308-0d34-0410-b5e6-96231b3b80d8
Fixes PR16146: gdb.base__call-ar-st.exp fails after
pre-RA-sched=source fixes.
Patch by Xiaoyi Guo!
This also fixes an unsupported dbg.value test case. Codegen was
previously incorrect but the test was passing by luck.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@182885 91177308-0d34-0410-b5e6-96231b3b80d8
Change SelectionDAG::getXXXNode() interfaces as well as call sites of
these functions to pass in SDLoc instead of DebugLoc.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@182703 91177308-0d34-0410-b5e6-96231b3b80d8
This let us to remove some custom code that matched constant offsets
from globals at instruction selection time as a special addressing mode.
No intended functionality change.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@181126 91177308-0d34-0410-b5e6-96231b3b80d8
The code now makes use of ComputeMaskedBits,
SelectionDAG::isBaseWithConstantOffset and TargetLowering::isGAPlusOffset
where appropriate reducing the amount of logic needed in XCoreISelLowering.
No intended functionality change.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@181125 91177308-0d34-0410-b5e6-96231b3b80d8
Thread local storage is not supported by the XMOS linker so we handle
thread local variables by lowering the variable to an array of n elements
(where n is the number of hardware threads per core, currently 8
for all XMOS devices) indexed by the the current thread ID.
Previously this lowering was spread across the XCoreISelLowering and the
XCoreAsmPrinter classes. Moving this to a separate pass should be much
cleaner.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@181124 91177308-0d34-0410-b5e6-96231b3b80d8
This allows us to get get rid of a hack in XCoreTargetObjectFile where the
the DataRel* sections were overridden.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@181116 91177308-0d34-0410-b5e6-96231b3b80d8
LegalizeDAG.cpp uses the value of the comparison operands when checking
the legality of BR_CC, so DAGCombiner should do the same.
v2:
- Expand more BR_CC value types for NVPTX
v3:
- Expand correct BR_CC value types for Hexagon, Mips, and XCore.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@176694 91177308-0d34-0410-b5e6-96231b3b80d8
The order in which operands appear in the encoded instruction is different
to order in which they appear in assembly. This changes the XCore backend to
use the instruction encoding order.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@173493 91177308-0d34-0410-b5e6-96231b3b80d8
With this change the operands order matches the order in which the operands
are encoded in the instruction.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@173477 91177308-0d34-0410-b5e6-96231b3b80d8