The Type Legalizer recognizes that VSELECT needs to be split, because the type
is to wide for the given target. The same does not always apply to SETCC,
because less space is required to encode the result of a comparison. As a result
VSELECT is split and SETCC is unrolled into scalar comparisons.
This commit fixes the issue by checking for VSELECT-SETCC patterns in the DAG
Combiner. If a matching pattern is found, then the result mask of SETCC is
promoted to the expected vector mask for the given target. This mask has usually
te same size as the VSELECT return type (except for Intel KNL). Now the type
legalizer will split both VSELECT and SETCC.
This allows the following X86 DAG Combine code to sucessfully detect the MIN/MAX
pattern. This fixes PR16695, PR17002, and <rdar://problem/14594431>.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@191130 91177308-0d34-0410-b5e6-96231b3b80d8
If the DAG already has only legal types, then the second round of DAG combines
is skipped. In this case VSELECT+SETCC patterns that match a more efficient
instruction (e.g. min/max) are never recognized.
This fix allows VSELECT+SETCC combines if the types are already legal before DAG
type legalization.
Reviewer: Nadav
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@190105 91177308-0d34-0410-b5e6-96231b3b80d8
This change came about primarily because of two issues in the existing code.
Niether of:
define i64 @test1(i64 %val) {
%in = trunc i64 %val to i32
tail call i32 @ret32(i32 returned %in)
ret i64 %val
}
define i64 @test2(i64 %val) {
tail call i32 @ret32(i32 returned undef)
ret i32 42
}
should be tail calls, and the function sameNoopInput is responsible. The main
problem is that it is completely symmetric in the "tail call" and "ret" value,
but in reality different things are allowed on each side.
For these cases:
1. Any truncation should lead to a larger value being generated by "tail call"
than needed by "ret".
2. Undef should only be allowed as a source for ret, not as a result of the
call.
Along the way I noticed that a mismatch between what this function treats as a
valid truncation and what the backends see can lead to invalid calls as well
(see x86-32 test case).
This patch refactors the code so that instead of being based primarily on
values which it recurses into when necessary, it starts by inspecting the type
and considers each fundamental slot that the backend will see in turn. For
example, given a pathological function that returned {{}, {{}, i32, {}}, i32}
we would consider each "real" i32 in turn, and ask if it passes through
unchanged. This is much closer to what the backend sees as a result of
ComputeValueVTs.
Aside from the bug fixes, this eliminates the recursion that's going on and, I
believe, makes the bulk of the code significantly easier to understand. The
trade-off is the nasty iterators needed to find the real types inside a
returned value.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@187787 91177308-0d34-0410-b5e6-96231b3b80d8
Due to the weird and wondeful usual arithmetic conversions, some
calculations involving negative values were getting performed in
uint32_t and then promoted to int64_t, which is really not a good
idea.
Patch by Katsuhiro Ueno.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@187703 91177308-0d34-0410-b5e6-96231b3b80d8
All insertf*/extractf* functions replaced with insert/extract since we have insertf and inserti forms.
Added lowering for INSERT_VECTOR_ELT / EXTRACT_VECTOR_ELT for 512-bit vectors.
Added lowering for EXTRACT/INSERT subvector for 512-bit vectors.
Added a test.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@187491 91177308-0d34-0410-b5e6-96231b3b80d8
CustomLowerNode was not being called during SplitVectorOperand,
meaning custom legalization could not be used by targets.
This also adds a test case for NVPTX that depends on this custom
legalization.
Differential Revision: http://llvm-reviews.chandlerc.com/D1195
Attempt to fix the buildbots by making the X86 test I just added platform independent
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@187202 91177308-0d34-0410-b5e6-96231b3b80d8
This reverts commit 187198. It broke the bots.
The soft float test probably needs a -triple because of name differences.
On the hard float test I am getting a "roundss $1, %xmm0, %xmm0", instead of
"vroundss $1, %xmm0, %xmm0, %xmm0".
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@187201 91177308-0d34-0410-b5e6-96231b3b80d8
CustomLowerNode was not being called during SplitVectorOperand,
meaning custom legalization could not be used by targets.
This also adds a test case for NVPTX that depends on this custom
legalization.
Differential Revision: http://llvm-reviews.chandlerc.com/D1195
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@187198 91177308-0d34-0410-b5e6-96231b3b80d8
Use PMIN/PMAX for UGE/ULE vector comparions to reduce the number of required
instructions. This trick also works for UGT/ULT, but there is no advantage in
doing so. It wouldn't reduce the number of instructions and it would actually
reduce performance.
Reviewer: Ben
radar:5972691
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@186432 91177308-0d34-0410-b5e6-96231b3b80d8