copy is a kill") to see if it fixes the i386 dragonegg buildbot, which is timing out
because gcc built with dragonegg is going into an infinite loop.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@134237 91177308-0d34-0410-b5e6-96231b3b80d8
The constraints are represented by the register class of the original
virtual register created for the inline asm. If the register class were
included in the operand descriptor, we might be able to do this.
For now, just give up on regclass inflation when inline asm is involved.
No test case, this bug hasn't happened yet.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@134226 91177308-0d34-0410-b5e6-96231b3b80d8
This patch will sometimes choose live range split points next to
interference instead of always splitting next to a register point. That
means spill code can now appear almost anywhere, and it was necessary
to fix code that didn't expect that.
The difficult places were:
- Between a CALL returning a value on the x87 stack and the
corresponding FpPOP_RETVAL (was FpGET_ST0). Probably also near x87
inline assembly, but that didn't actually show up in testing.
- Between a CALL popping arguments off the stack and the corresponding
ADJCALLSTACKUP.
Both are fixed now. The only place spill code can't appear is after
terminators, see SplitAnalysis::getLastSplitPoint.
Original commit message:
Rewrite RAGreedy::splitAroundRegion, now with cool ASCII art.
This function has to deal with a lot of special cases, and the old
version got it wrong sometimes. In particular, it would sometimes leave
multiple uses in the stack interval in a single block. That causes bad
code with multiple reloads in the same basic block.
The new version handles block entry and exit in a single pass. It first
eliminates all the easy cases, and then goes on to create a local
interval for the blocks with difficult interference. Previously, we
would only create the local interval for completely isolated blocks.
It can happen that the stack interval becomes completely empty because
we could allocate a register in all edge bundles, and the new local
intervals deal with the interference. The empty stack interval is
harmless, but we need to remove a SplitKit assertion that checks for
empty intervals.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@134125 91177308-0d34-0410-b5e6-96231b3b80d8
This function has to deal with a lot of special cases, and the old
version got it wrong sometimes. In particular, it would sometimes leave
multiple uses in the stack interval in a single block. That causes bad
code with multiple reloads in the same basic block.
The new version handles block entry and exit in a single pass. It first
eliminates all the easy cases, and then goes on to create a local
interval for the blocks with difficult interference. Previously, we
would only create the local interval for completely isolated blocks.
It can happen that the stack interval becomes completely empty because
we could allocate a register in all edge bundles, and the new local
intervals deal with the interference. The empty stack interval is
harmless, but we need to remove a SplitKit assertion that checks for
empty intervals.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@134047 91177308-0d34-0410-b5e6-96231b3b80d8
sink them into MC layer.
- Added MCInstrInfo, which captures the tablegen generated static data. Chang
TargetInstrInfo so it's based off MCInstrInfo.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@134021 91177308-0d34-0410-b5e6-96231b3b80d8
Removed the check that peeks past EXTRA_SUBREG, which I don't think
makes sense any more. Intead treat it as a normal register def. No
significant affect on x86 or ARM benchmarks.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@133917 91177308-0d34-0410-b5e6-96231b3b80d8
Both become <earlyclobber> defs on the INLINEASM MachineInstr, but we
now use two different asm operand kinds.
The new Kind_Clobber is treated identically to the old
Kind_RegDefEarlyClobber for now, but x87 floating point stack inline
assembly does care about the difference.
This will pop a register off the stack:
asm("fstp %st" : : "t"(x) : "st");
While this will pop the input and push an output:
asm("fst %st" : "=&t"(r) : "t"(x));
We need to know if ST0 was a clobber or an output operand, and we can't
depend on <dead> flags for that.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@133902 91177308-0d34-0410-b5e6-96231b3b80d8
The INLINEASM MachineInstrs have an immediate operand describing each
original inline asm operand. Decode the bits in MachineInstr::print() so
it is easier to read:
INLINEASM <es:rorq $1,$0>, $0:[regdef], %vreg0<def>, %vreg1<def>, $1:[imm], 1, $2:[reguse] [tiedto:$0], %vreg2, %vreg3, $3:[regdef-ec], %EFLAGS<earlyclobber,imp-def>
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@133901 91177308-0d34-0410-b5e6-96231b3b80d8
target machine from those that are only needed by codegen. The goal is to
sink the essential target description into MC layer so we can start building
MC based tools without needing to link in the entire codegen.
First step is to refactor TargetRegisterInfo. This patch added a base class
MCRegisterInfo which TargetRegisterInfo is derived from. Changed TableGen to
separate register description from the rest of the stuff.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@133782 91177308-0d34-0410-b5e6-96231b3b80d8
register allocation if it has a indirectbr or if we can duplicate it to
every predecessor.
This fixes the SingleSource/Benchmarks/Shootout-C++/matrix.cpp regression but
keeps the previous improvements to sunspider.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@133682 91177308-0d34-0410-b5e6-96231b3b80d8
If the linker supports it, this will hold the CIE and FDE information in a
compact format. The implementation of the compact unwinding emission is coming
soon.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@133658 91177308-0d34-0410-b5e6-96231b3b80d8