There is a comment at the top of DAGTypeLegalizer::PerformExpensiveChecks
which, in part, says:
// Note that these invariants may not hold momentarily when processing a node:
// the node being processed may be put in a map before being marked Processed.
Unfortunately, this assert would be valid only if the above-mentioned invariant
held unconditionally. This was causing llc to assert when, in fact,
everything was fine.
Thanks to Richard Sandiford for investigating this issue!
Fixes PR16562.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@186338 91177308-0d34-0410-b5e6-96231b3b80d8
a bot.
This reverts the commit which introduced a new implementation of the
fancy SROA pass designed to reduce its overhead. I'll skip the huge
commit log here, refer to r186316 if you're looking for how this all
works and why it works that way.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@186332 91177308-0d34-0410-b5e6-96231b3b80d8
This broke clang's crash-report.c test, and I haven't been able to
figure it out yet.
This reverts commit r186319.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@186329 91177308-0d34-0410-b5e6-96231b3b80d8
No functionality change.
This is preparing to move response file parsing into lib/Option so it
can be shared between clang and lld. This change isn't just a
micro-optimization. Clang's driver uses a std::set<std::string> to
unique arguments while parsing response files, so this matches that.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@186319 91177308-0d34-0410-b5e6-96231b3b80d8
Joerg Sonnenberger tells me one can open a directory in freebsd. I will try
to centralize our calls to open so that we can handle O_BINARY in one place,
and will then handle this there too.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@186317 91177308-0d34-0410-b5e6-96231b3b80d8
different core implementation strategy.
Previously, SROA would build a relatively elaborate partitioning of an
alloca, associate uses with each partition, and then rewrite the uses of
each partition in an attempt to break apart the alloca into chunks that
could be promoted. This was very wasteful in terms of memory and compile
time because regardless of how complex the alloca or how much we're able
to do in breaking it up, all of the datastructure work to analyze the
partitioning was done up front.
The new implementation attempts to form partitions of the alloca lazily
and on the fly, rewriting the uses that make up that partition as it
goes. This has a few significant effects:
1) Much simpler data structures are used throughout.
2) No more double walk of the recursive use graph of the alloca, only
walk it once.
3) No more complex algorithms for associating a particular use with
a particular partition.
4) PHI and Select speculation is simplified and happens lazily.
5) More precise information is available about a specific use of the
alloca, removing the need for some side datastructures.
Ultimately, I think this is a much better implementation. It removes
about 300 lines of code, but arguably removes more like 500 considering
that some code grew in the process of being factored apart and cleaned
up for this all to work.
I've re-used as much of the old implementation as possible, which
includes the lion's share of code in the form of the rewriting logic.
The interesting new logic centers around how the uses of a partition are
sorted, and split into actual partitions.
Each instruction using a pointer derived from the alloca gets
a 'Partition' entry. This name is totally wrong, but I'll do a rename in
a follow-up commit as there is already enough churn here. The entry
describes the offset range accessed and the nature of the access. Once
we have all of these entries we sort them in a very specific way:
increasing order of begin offset, followed by whether they are
splittable uses (memcpy, etc), followed by the end offset or whatever.
Sorting by splittability is important as it simplifies the collection of
uses into a partition.
Once we have these uses sorted, we walk from the beginning to the end
building up a range of uses that form a partition of the alloca.
Overlapping unsplittable uses are merged into a single partition while
splittable uses are broken apart and carried from one partition to the
next. A partition is also introduced to bridge splittable uses between
the unsplittable regions when necessary.
I've looked at the performance PRs fairly closely. PR15471 no longer
will even load (the module is invalid). Not sure what is up there.
PR15412 improves by between 5% and 10%, however it is nearly impossible
to know what is holding it up as SROA (the entire pass) takes less time
than reading the IR for that test case. The analysis takes the same time
as running mem2reg on the final allocas. I suspect (without much
evidence) that the new implementation will scale much better however,
and it is just the small nature of the test cases that makes the changes
small and noisy. Either way, it is still simpler and cleaner I think.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@186316 91177308-0d34-0410-b5e6-96231b3b80d8
is executed within the same second as the inputs for the test are
checked out from the source tree, it will fail to update due to being
below the resolution of the 'mtime' test used.
Now, this may seem improbably to you... ok, maybe *really* improbable,
but consider a system which does distributed execution of tests by
shipping their inputs to another machine and runs them. That might cause
the mtime to be quite recent during the test run. ;]
Instead, create two files directly in the test (allowing all platforms
to see the problem) and add either a use of the 'touch' command that
forces one mtime to some time quite a bit in the past, or it sleeps for
just over a second to be outside of the precision window.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@186282 91177308-0d34-0410-b5e6-96231b3b80d8
This update was done with the following bash script:
find test/CodeGen -name "*.ll" | \
while read NAME; do
echo "$NAME"
if ! grep -q "^; *RUN: *llc.*debug" $NAME; then
TEMP=`mktemp -t temp`
cp $NAME $TEMP
sed -n "s/^define [^@]*@\([A-Za-z0-9_]*\)(.*$/\1/p" < $NAME | \
while read FUNC; do
sed -i '' "s/;\(.*\)\([A-Za-z0-9_-]*\):\( *\)$FUNC: *\$/;\1\2-LABEL:\3$FUNC:/g" $TEMP
done
sed -i '' "s/;\(.*\)-LABEL-LABEL:/;\1-LABEL:/" $TEMP
sed -i '' "s/;\(.*\)-NEXT-LABEL:/;\1-NEXT:/" $TEMP
sed -i '' "s/;\(.*\)-NOT-LABEL:/;\1-NOT:/" $TEMP
sed -i '' "s/;\(.*\)-DAG-LABEL:/;\1-DAG:/" $TEMP
mv $TEMP $NAME
fi
done
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@186280 91177308-0d34-0410-b5e6-96231b3b80d8
The great thing about the SCEVAddRec No-Wrap flag (unlike nsw/nuw) is
that is can be preserved while normalizing (reassociating and
factoring).
The bad thing is that is can't be tranfered back to IR, which is one
of the reasons I don't like the concept of SCEVExpander.
Sorry, I can't think of a direct way to test this, which is why these
were FIXMEs for so long. I just think it's a good time to finally
clean it up.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@186273 91177308-0d34-0410-b5e6-96231b3b80d8
This conversion was done with the following bash script:
find test/Transforms -name "*.ll" | \
while read NAME; do
echo "$NAME"
if ! grep -q "^; *RUN: *llc" $NAME; then
TEMP=`mktemp -t temp`
cp $NAME $TEMP
sed -n "s/^define [^@]*@\([A-Za-z0-9_]*\)(.*$/\1/p" < $NAME | \
while read FUNC; do
sed -i '' "s/;\(.*\)\([A-Za-z0-9_]*\):\( *\)define\([^@]*\)@$FUNC\([( ]*\)\$/;\1\2-LABEL:\3define\4@$FUNC(/g" $TEMP
done
mv $TEMP $NAME
fi
done
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@186269 91177308-0d34-0410-b5e6-96231b3b80d8
This update was done with the following bash script:
find test/Transforms -name "*.ll" | \
while read NAME; do
echo "$NAME"
if ! grep -q "^; *RUN: *llc" $NAME; then
TEMP=`mktemp -t temp`
cp $NAME $TEMP
sed -n "s/^define [^@]*@\([A-Za-z0-9_]*\)(.*$/\1/p" < $NAME | \
while read FUNC; do
sed -i '' "s/;\(.*\)\([A-Za-z0-9_]*\):\( *\)@$FUNC\([( ]*\)\$/;\1\2-LABEL:\3@$FUNC(/g" $TEMP
done
mv $TEMP $NAME
fi
done
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@186268 91177308-0d34-0410-b5e6-96231b3b80d8
This was done with the following sed invocation to catch label lines demarking function boundaries:
sed -i '' "s/^;\( *\)\([A-Z0-9_]*\):\( *\)test\([A-Za-z0-9_-]*\):\( *\)$/;\1\2-LABEL:\3test\4:\5/g" test/CodeGen/*/*.ll
which was written conservatively to avoid false positives rather than false negatives. I scanned through all the changes and everything looks correct.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@186258 91177308-0d34-0410-b5e6-96231b3b80d8
If an outside loop user of the reduction value uses the header phi node we
cannot just reduce the vectorized phi value in the vector code epilog because
we would loose VF-1 reductions.
lp:
p = phi (0, lv)
lv = lv + 1
...
brcond , lp, outside
outside:
usr = add 0, p
(Say the loop iterates two times, the value of p coming out of the loop is one).
We cannot just transform this to:
vlp:
p = phi (<0,0>, lv)
lv = lv + <1,1>
..
brcond , lp, outside
outside:
p_reduced = p[0] + [1];
usr = add 0, p_reduced
(Because the original loop iterated two times the vectorized loop would iterate
one time, but p_reduced ends up being zero instead of one).
We would have to execute VF-1 iterations in the scalar remainder loop in such
cases. For now, just disable vectorization.
PR16522
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@186256 91177308-0d34-0410-b5e6-96231b3b80d8
It is failing with
YAMLTest.cpp:38: instantiated from here
YAMLTraits.h:226: error: 'llvm::yaml::MappingTraits<<unnamed>::BinaryHolder>::mapping' is not a valid template argument for type 'void (*)(llvm::yaml::IO&, <unnamed>::BinaryHolder&)' because function 'static void llvm::yaml::MappingTraits<<unnamed>::BinaryHolder>::mapping(llvm::yaml::IO&, <unnamed>::BinaryHolder&)' has not external linkage
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@186245 91177308-0d34-0410-b5e6-96231b3b80d8
In general, one should always complete CFG modifications first, update
CFG-based analyses, like Dominatores and LoopInfo, then generate
instruction sequences.
LoopVectorizer was creating a new loop, calling SCEVExpander to
generate checks, then updating LoopInfo. I just changed the order.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@186241 91177308-0d34-0410-b5e6-96231b3b80d8