ARM symbol variants are written with parens instead of @ like this:
.word __GLOBAL_I_a(target1)
This commit adds support for parsing these symbol variants in
expressions. We introduce a new flag to MCAsmInfo that indicates the
parser should use parens to parse the symbol variant. The expression
parser is modified to look for symbol variants using parens instead
of @ when the corresponding MCAsmInfo flag is true.
The MCAsmInfo parens flag is enabled only for ARM on ELF.
By adding this flag to MCAsmInfo, we are able to get rid of
redundant ARM-specific symbol variants and use the generic variants
instead (e.g. VK_GOT instead of VK_ARM_GOT). We use the new
UseParensForSymbolVariant attribute in MCAsmInfo to correctly print
the symbol variants for arm.
To achive this we need to keep a handle to the MCAsmInfo in the
MCSymbolRefExpr class that we can check when printing the symbol
variant.
Updated Tests:
Changed case of symbol variant to match the generic kind.
test/CodeGen/ARM/tls-models.ll
test/CodeGen/ARM/tls1.ll
test/CodeGen/ARM/tls2.ll
test/CodeGen/Thumb2/tls1.ll
test/CodeGen/Thumb2/tls2.ll
PR18080
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@196424 91177308-0d34-0410-b5e6-96231b3b80d8
By default, the behavior of IT block generation will be determinated
dynamically base on the arch (armv8 vs armv7). This patch adds backend
options: -arm-restrict-it and -arm-no-restrict-it. The former one
restricts the generation of IT blocks (the same behavior as thumbv8) for
both arches. The later one allows the generation of legacy IT block (the
same behavior as ARMv7 Thumb2) for both arches.
Clang will support -mrestrict-it and -mno-restrict-it, which is
compatible with GCC.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@194592 91177308-0d34-0410-b5e6-96231b3b80d8
Per original comment, the intention of this loop
is to go ahead and break the critical edge
(in order to sink this instruction) if there's
reason to believe doing so might "unblock" the
sinking of additional instructions that define
registers used by this one. The idea is that if
we have a few instructions to sink "together"
breaking the edge might be worthwhile.
This commit makes a few small changes
to help better realize this goal:
First, modify the loop to ignore registers
defined by this instruction. We don't
sink definitions of physical registers,
and sinking an SSA definition isn't
going to unblock an upstream instruction.
Second, ignore uses of physical registers.
Instructions that define physical registers are
rejected for sinking, and so moving this one
won't enable moving any defining instructions.
As an added bonus, while virtual register
use-def chains are generally small due
to SSA goodness, iteration over the uses
and definitions (used by hasOneNonDBGUse)
for physical registers like EFLAGS
can be rather expensive in practice.
(This is the original reason for looking at this)
Finally, to keep things simple continue
to only consider this trick for registers that
have a single use (via hasOneNonDBGUse),
but to avoid spuriously breaking critical edges
only do so if the definition resides
in the same MBB and therefore this one directly
blocks it from being sunk as well.
If sinking them together is meant to be,
let the iterative nature of this pass
sink the definition into this block first.
Update tests to accomodate this change,
add new testcase where sinking avoids pipeline stalls.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@192608 91177308-0d34-0410-b5e6-96231b3b80d8
The alignment of allocated space was wrong, see Bugzila 17345.
Done by Zvi Rackover <zvi.rackover@intel.com>.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@192573 91177308-0d34-0410-b5e6-96231b3b80d8
IT blocks can only be one instruction lonf, and can only contain a subset of
the 16 instructions.
Patch by Artyom Skrobov!
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@190309 91177308-0d34-0410-b5e6-96231b3b80d8
I'd forgotten that "Requires" blocks override rather than add to the
constraints, so my pseudo-instruction was being selected in Thumb mode leading
to nonsense instructions.
rdar://problem/14817358
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@189096 91177308-0d34-0410-b5e6-96231b3b80d8
Back in the mists of time (2008), it seems TableGen couldn't handle the
patterns necessary to match ARM's CMOV node that we convert select operations
to, so we wrote a lot of fairly hairy C++ to do it for us.
TableGen can deal with it now: there were a few minor differences to CodeGen
(see tests), but nothing obviously worse that I could see, so we should
probably address anything that *does* come up in a localised manner.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@188995 91177308-0d34-0410-b5e6-96231b3b80d8
Indirect tail-calls shouldn't use R9 for the branch destination, as
it's not reliably a call-clobbered register.
rdar://14793425
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@188967 91177308-0d34-0410-b5e6-96231b3b80d8
- Instead of setting the suffixes in a bunch of places, just set one master
list in the top-level config. We now only modify the suffix list in a few
suites that have one particular unique suffix (.ml, .mc, .yaml, .td, .py).
- Aside from removing the need for a bunch of lit.local.cfg files, this enables
4 tests that were inadvertently being skipped (one in
Transforms/BranchFolding, a .s file each in DebugInfo/AArch64 and
CodeGen/PowerPC, and one in CodeGen/SI which is now failing and has been
XFAILED).
- This commit also fixes a bunch of config files to use config.root instead of
older copy-pasted code.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@188513 91177308-0d34-0410-b5e6-96231b3b80d8
indirect branches correctly. Under some circumstances, this led to the deletion
of basic blocks that were the destination of indirect branches. In that case it
left indirect branches to nowhere in the code.
This patch replaces, and is more general than either of the previous fixes for
indirect-branch-analysis issues, r181161 and r186461.
For other branches (not indirect) this refactor should have *almost* identical
behavior to the previous version. There are some corner cases where this
refactor is able to analyze blocks that the previous version could not (e.g.
this necessitated the update to thumb2-ifcvt2.ll).
<rdar://problem/14464830>
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@186735 91177308-0d34-0410-b5e6-96231b3b80d8
All changes were made by the following bash script:
find test/CodeGen -name "*.ll" | \
while read NAME; do
echo "$NAME"
grep -q "^; *RUN: *llc.*debug" $NAME && continue
grep -q "^; *RUN:.*llvm-objdump" $NAME && continue
grep -q "^; *RUN: *opt.*" $NAME && continue
TEMP=`mktemp -t temp`
cp $NAME $TEMP
sed -n "s/^define [^@]*@\([A-Za-z0-9_]*\)(.*$/\1/p" < $NAME | \
while read FUNC; do
sed -i '' "s/;\([A-Za-z0-9_-]*\)\([A-Za-z0-9_-]*\):\( *\)$FUNC[:]* *\$/;\1\2-LABEL:\3$FUNC:/g" $TEMP
done
sed -i '' "s/;\(.*\)-LABEL-LABEL:/;\1-LABEL:/" $TEMP
sed -i '' "s/;\(.*\)-NEXT-LABEL:/;\1-NEXT:/" $TEMP
sed -i '' "s/;\(.*\)-NOT-LABEL:/;\1-NOT:/" $TEMP
sed -i '' "s/;\(.*\)-DAG-LABEL:/;\1-DAG:/" $TEMP
mv $TEMP $NAME
done
This script catches a superset of the cases caught by the script associated with commit r186280. It initially found some false positives due to unusual constructs in a minority of tests; all such cases were disambiguated first in commit r186621.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@186624 91177308-0d34-0410-b5e6-96231b3b80d8
This update was done with the following bash script:
find test/CodeGen -name "*.ll" | \
while read NAME; do
echo "$NAME"
if ! grep -q "^; *RUN: *llc.*debug" $NAME; then
TEMP=`mktemp -t temp`
cp $NAME $TEMP
sed -n "s/^define [^@]*@\([A-Za-z0-9_]*\)(.*$/\1/p" < $NAME | \
while read FUNC; do
sed -i '' "s/;\(.*\)\([A-Za-z0-9_-]*\):\( *\)$FUNC: *\$/;\1\2-LABEL:\3$FUNC:/g" $TEMP
done
sed -i '' "s/;\(.*\)-LABEL-LABEL:/;\1-LABEL:/" $TEMP
sed -i '' "s/;\(.*\)-NEXT-LABEL:/;\1-NEXT:/" $TEMP
sed -i '' "s/;\(.*\)-NOT-LABEL:/;\1-NOT:/" $TEMP
sed -i '' "s/;\(.*\)-DAG-LABEL:/;\1-DAG:/" $TEMP
mv $TEMP $NAME
fi
done
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@186280 91177308-0d34-0410-b5e6-96231b3b80d8
This was done with the following sed invocation to catch label lines demarking function boundaries:
sed -i '' "s/^;\( *\)\([A-Z0-9_]*\):\( *\)test\([A-Za-z0-9_-]*\):\( *\)$/;\1\2-LABEL:\3test\4:\5/g" test/CodeGen/*/*.ll
which was written conservatively to avoid false positives rather than false negatives. I scanned through all the changes and everything looks correct.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@186258 91177308-0d34-0410-b5e6-96231b3b80d8
Propagate the fix from r185712 to Thumb2 codegen as well. Original
commit message applies here as well:
A "pkhtb x, x, y asr #num" uses the lower 16 bits of "y asr #num" and
packs them in the bottom half of "x". An arithmetic and logic shift are
only equivalent in this context if the shift amount is 16. We would be
shifting in ones into the bottom 16bits instead of zeros if "y" is
negative.
rdar://14338767
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@185982 91177308-0d34-0410-b5e6-96231b3b80d8
The barrier instructions are only "always-execute" in ARM mode, they can quite
happily sit inside an IT block in Thumb.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@184964 91177308-0d34-0410-b5e6-96231b3b80d8
ARM FastISel is currently only enabled for iOS non-Thumb1, and I'm working on
enabling it for other targets. As a first step I've fixed some of the tests.
Changes to ARM FastISel tests:
- Different triples don't generate the same relocations (especially
movw/movt versus constant pool loads). Use a regex to allow either.
- Mangling is different. Use a regex to allow either.
- The reserved registers are sometimes different, so registers get
allocated in a different order. Capture the names only where this
occurs.
- Add -verify-machineinstrs to some tests where it works. It doesn't
work everywhere it should yet.
- Add -fast-isel-abort to many tests that didn't have it before.
- Split out the VarArg test from fast-isel-call.ll into its own
test. This simplifies test setup because of --check-prefix.
Patch by JF Bastien
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@181801 91177308-0d34-0410-b5e6-96231b3b80d8
The Printer will now print instructions with the correct alignment specifier syntax, like
vld1.8 {d16}, [r0:64]
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@175884 91177308-0d34-0410-b5e6-96231b3b80d8
This fixes some problems with too conservative checking where we were
marking all aliases of a register as used, and then also checking all
aliases when allocating a register.
<rdar://problem/13249625>
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@175782 91177308-0d34-0410-b5e6-96231b3b80d8
When creating an allocation hint for a register pair, make sure the hint
for the physical register reference is still in the allocation order.
rdar://13240556
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@175541 91177308-0d34-0410-b5e6-96231b3b80d8
These tests in particular try to use escaped square brackets as an
argument to grep, which is failing for me with native win32 python. It
appears the backslash is being lost near the CreateProcess*() call.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@173506 91177308-0d34-0410-b5e6-96231b3b80d8
are more expensive than the non-flag setting variant. Teach thumb2 size
reduction pass to avoid generating them unless we are optimizing for size.
rdar://12892707
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@170728 91177308-0d34-0410-b5e6-96231b3b80d8
Some instructions in ARM require 2 even-odd paired GPRs. This
patch adds support for such register class.
Patch by Weiming Zhao!
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@166816 91177308-0d34-0410-b5e6-96231b3b80d8
into a sbc with a positive number, the immediate should be complemented, not
negated. Also added a missing pattern for ARM codegen.
rdar://12559385
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@166613 91177308-0d34-0410-b5e6-96231b3b80d8
aligned address. Based on patch by David Peixotto.
Also use vld1.64 / vst1.64 with 128-bit alignment to take advantage of alignment
hints. rdar://12090772, rdar://12238782
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@164089 91177308-0d34-0410-b5e6-96231b3b80d8
Now that it is possible to dynamically tie MachineInstr operands,
predicated instructions are possible in SSA form:
%vreg3<def> = SUBri %vreg1, -2147483647, pred:14, pred:%noreg, %opt:%noreg
%vreg4<def,tied1> = MOVCCr %vreg3<tied0>, %vreg1, %pred:12, pred:%CPSR
Becomes a predicated SUBri with a tied imp-use:
SUBri %vreg1, -2147483647, pred:13, pred:%CPSR, opt:%noreg, %vreg1<imp-use,tied0>
This means that any instruction that is safe to move can be folded into
a MOVCC, and the *CC pseudo-instructions are no longer needed.
The test case changes reflect that Thumb2SizeReduce recognizes the
predicated instructions. It didn't understand the pseudos.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@163274 91177308-0d34-0410-b5e6-96231b3b80d8
This patch corrects the definition of umlal/smlal instructions and adds support
for matching them to the ARM dag combiner.
Bug 12213
Patch by Yin Ma!
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@163136 91177308-0d34-0410-b5e6-96231b3b80d8
It is not my plan to duplicate the entire ARM instruction set with
predicated versions. We need a way of representing predicated
instructions in SSA form without requiring a separate opcode.
Then the pseudo-instructions can go away.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@162061 91177308-0d34-0410-b5e6-96231b3b80d8
The ARM select instructions are just predicated moves. If the select is
the only use of an operand, the instruction defining the operand can be
predicated instead, saving one instruction and decreasing register
pressure.
This implementation can turn AND/ORR/EOR instructions into their
corresponding ANDCC/ORRCC/EORCC variants. Ideally, we should be able to
predicate any instruction, but we don't yet support predicated
instructions in SSA form.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@161994 91177308-0d34-0410-b5e6-96231b3b80d8
another mechanical change accomplished though the power of terrible Perl
scripts.
I have manually switched some "s to 's to make escaping simpler.
While I started this to fix tests that aren't run in all configurations,
the massive number of tests is due to a really frustrating fragility of
our testing infrastructure: things like 'grep -v', 'not grep', and
'expected failures' can mask broken tests all too easily.
Essentially, I'm deeply disturbed that I can change the testsuite so
radically without causing any change in results for most platforms. =/
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@159547 91177308-0d34-0410-b5e6-96231b3b80d8
through my perl nets.
With this, the test suite passes even if I force it to run with the
built-in shell test logic, except for a test which REQUIREs shell.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@159529 91177308-0d34-0410-b5e6-96231b3b80d8
This was done through the aid of a terrible Perl creation. I will not
paste any of the horrors here. Suffice to say, it require multiple
staged rounds of replacements, state carried between, and a few
nested-construct-parsing hacks that I'm not proud of. It happens, by
luck, to be able to deal with all the TCL-quoting patterns in evidence
in the LLVM test suite.
If anyone is maintaining large out-of-tree test trees, feel free to poke
me and I'll send you the steps I used to convert things, as well as
answer any painful questions etc. IRC works best for this type of thing
I find.
Once converted, switch the LLVM lit config to use ShTests the same as
Clang. In addition to being able to delete large amounts of Python code
from 'lit', this will also simplify the entire test suite and some of
lit's architecture.
Finally, the test suite runs 33% faster on Linux now. ;]
For my 16-hardware-thread (2x 4-core xeon e5520): 36s -> 24s
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@159525 91177308-0d34-0410-b5e6-96231b3b80d8
Live ranges with a constrained register class may benefit from splitting
around individual uses. It allows the remaining live range to use a
larger register class where it may allocate. This is like spilling to a
different register class.
This is only attempted on constrained register classes.
<rdar://problem/11438902>
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@157354 91177308-0d34-0410-b5e6-96231b3b80d8
Use a dedicated MachO load command to annotate data-in-code regions.
This is the same format the linker produces for final executable images,
allowing consistency of representation and use of introspection tools
for both object and executable files.
Data-in-code regions are annotated via ".data_region"/".end_data_region"
directive pairs, with an optional region type.
data_region_directive := ".data_region" { region_type }
region_type := "jt8" | "jt16" | "jt32" | "jta32"
end_data_region_directive := ".end_data_region"
The previous handling of ARM-style "$d.*" labels was broken and has
been removed. Specifically, it didn't handle ARM vs. Thumb mode when
marking the end of the section.
rdar://11459456
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@157062 91177308-0d34-0410-b5e6-96231b3b80d8
This option has been disabled for a while, and it is going away so I can
clean up the coalescer code.
The tests that required physreg joining to be enabled were almost all of
the form "tiny function with interference between arguments and return
value". Such functions are usually inlined in the real world.
The problem exposed by phys_subreg_coalesce-3.ll is real, but fairly
rare.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@157027 91177308-0d34-0410-b5e6-96231b3b80d8
the feature set of v7a. This comes about if the user specifies something like
-arch armv7 -mcpu=cortex-m3. We shouldn't be generating instructions such as
uxtab in this case.
rdar://11318438
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@155601 91177308-0d34-0410-b5e6-96231b3b80d8