r0 = mov #0
r0 = moveq #1
Then the second instruction has an implicit data dependency on the first
instruction. Sadly I have yet to come up with a small test case that
demonstrate the post-ra scheduler taking advantage of this.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@146583 91177308-0d34-0410-b5e6-96231b3b80d8
Two new TargetInstrInfo hooks lets the target tell ExecutionDepsFix
about instructions with partial register updates causing false unwanted
dependencies.
The ExecutionDepsFix pass will break the false dependencies if the
updated register was written in the previoius N instructions.
The small loop added to sse-domains.ll runs twice as fast with
dependency-breaking instructions inserted.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@144602 91177308-0d34-0410-b5e6-96231b3b80d8
This also makes it possible to reduce the number of pseudo instructions
and get rid of the encoding information.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@140776 91177308-0d34-0410-b5e6-96231b3b80d8
I am going to unify the SSEDomainFix and NEONMoveFix passes into a
single target independent pass. They are essentially doing the same
thing.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@140652 91177308-0d34-0410-b5e6-96231b3b80d8
Many targets use pseudo instructions to help register allocation. Like
the COPY instruction, these pseudos can be expanded after register
allocation. The early expansion can make life easier for PEI and the
post-ra scheduler.
This patch adds a hook that is called for all remaining pseudo
instructions from the ExpandPostRAPseudos pass.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@140472 91177308-0d34-0410-b5e6-96231b3b80d8
This is still a hack until we can teach tblgen to generate the
optional CPSR operand rather than an implicit CPSR def. But the
strangeness is now limited to the selection DAG. ADD/SUB MI's no
longer have implicit CPSR defs, nor do we allow flag setting variants
of these opcodes in machine code. There are several corner cases to
consider, and getting one wrong would previously lead to nasty
miscompilation. It's not the first time I've debugged one, so this
time I added enough verification to ensure it won't happen again.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@140228 91177308-0d34-0410-b5e6-96231b3b80d8
These the methods are target-independent since they simply scan the
memory operands. They can live in TargetInstrInfoImpl.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@137063 91177308-0d34-0410-b5e6-96231b3b80d8
sink them into MC layer.
- Added MCInstrInfo, which captures the tablegen generated static data. Chang
TargetInstrInfo so it's based off MCInstrInfo.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@134021 91177308-0d34-0410-b5e6-96231b3b80d8
regs. This is the only change in this checkin that may affects the
default scheduler. With better register tracking and heuristics, it
doesn't make sense to artificially lower the register limit so much.
Added -sched-high-latency-cycles and X86InstrInfo::isHighLatencyDef to
give the scheduler a way to account for div and sqrt on targets that
don't have an itinerary. It is currently defaults to 10 (the actual
number doesn't matter much), but only takes effect on non-default
schedulers: list-hybrid and list-ilp.
Added several heuristics that can be individually disabled for the
non-default sched=list-ilp mode. This helps us determine how much
better we can do on a given benchmark than the default
scheduler. Certain compute intensive loops run much faster in this
mode with the right set of heuristics, and it doesn't seem to have
much negative impact elsewhere. Not all of the heuristics are needed,
but we still need to experiment to decide which should be disabled by
default for sched=list-ilp.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@127067 91177308-0d34-0410-b5e6-96231b3b80d8
flags. They are still not enable in this revision.
Added TargetInstrInfo::isZeroCost() to fix a fundamental problem with
the scheduler's model of operand latency in the selection DAG.
Generalized unit tests to work with sched-cycles.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@123969 91177308-0d34-0410-b5e6-96231b3b80d8
TargetInstrInfo:
Change produceSameValue() to take MachineRegisterInfo as an optional argument.
When in SSA form, targets can use it to make more aggressive equality analysis.
Machine LICM:
1. Eliminate isLoadFromConstantMemory, use MI.isInvariantLoad instead.
2. Fix a bug which prevent CSE of instructions which are not re-materializable.
3. Use improved form of produceSameValue.
ARM:
1. Teach ARM produceSameValue to look pass some PIC labels.
2. Look for operands from different loads of different constant pool entries
which have same values.
3. Re-implement PIC GA materialization using movw + movt. Combine the pair with
a "add pc" or "ldr [pc]" to form pseudo instructions. This makes it possible
to re-materialize the instruction, allow machine LICM to hoist the set of
instructions out of the loop and make it possible to CSE them. It's a bit
hacky, but it significantly improve code quality.
4. Some minor bug fixes as well.
With the fixes, using movw + movt to materialize GAs significantly outperform the
load from constantpool method. 186.crafty and 255.vortex improved > 20%, 254.gap
and 176.gcc ~10%.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@123905 91177308-0d34-0410-b5e6-96231b3b80d8
DAG scheduling during isel. Most new functionality is currently
guarded by -enable-sched-cycles and -enable-sched-hazard.
Added InstrItineraryData::IssueWidth field, currently derived from
ARM itineraries, but could be initialized differently on other targets.
Added ScheduleHazardRecognizer::MaxLookAhead to indicate whether it is
active, and if so how many cycles of state it holds.
Added SchedulingPriorityQueue::HasReadyFilter to allowing gating entry
into the scheduler's available queue.
ScoreboardHazardRecognizer now accesses the ScheduleDAG in order to
get information about it's SUnits, provides RecedeCycle for bottom-up
scheduling, correctly computes scoreboard depth, tracks IssueCount, and
considers potential stall cycles when checking for hazards.
ScheduleDAGRRList now models machine cycles and hazards (under
flags). It tracks MinAvailableCycle, drives the hazard recognizer and
priority queue's ready filter, manages a new PendingQueue, properly
accounts for stall cycles, etc.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@122541 91177308-0d34-0410-b5e6-96231b3b80d8
and xor. The 32-bit move immediates can be hoisted out of loops by machine
LICM but the isel hacks were preventing them.
Instead, let peephole optimization pass recognize registers that are defined by
immediates and the ARM target hook will fold the immediates in.
Other changes include 1) do not fold and / xor into cmp to isel TST / TEQ
instructions if there are multiple uses. This happens when the 'and' is live
out, machine sink would have sinked the computation and that ends up pessimizing
code. The peephole pass would recognize situations where the 'and' can be
toggled to define CPSR and eliminate the comparison anyway.
2) Move peephole pass to after machine LICM, sink, and CSE to avoid blocking
important optimizations.
rdar://8663787, rdar://8241368
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@119548 91177308-0d34-0410-b5e6-96231b3b80d8
1. Fix pre-ra scheduler so it doesn't try to push instructions above calls to
"optimize for latency". Call instructions don't have the right latency and
this is more likely to use introduce spills.
2. Fix if-converter cost function. For ARM, it should use instruction latencies,
not # of micro-ops since multi-latency instructions is completely executed
even when the predicate is false. Also, some instruction will be "slower"
when they are predicated due to the register def becoming implicit input.
rdar://8598427
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@118135 91177308-0d34-0410-b5e6-96231b3b80d8
"long latency" enough to hoist even if it may increase spilling. Reloading
a value from spill slot is often cheaper than performing an expensive
computation in the loop. For X86, that means machine LICM will hoist
SQRT, DIV, etc. ARM will be somewhat aggressive with VFP and NEON
instructions.
- Enable register pressure aware machine LICM by default.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@116781 91177308-0d34-0410-b5e6-96231b3b80d8
allow target to correctly compute latency for cases where static scheduling
itineraries isn't sufficient. e.g. variable_ops instructions such as
ARM::ldm.
This also allows target without scheduling itineraries to compute operand
latencies. e.g. X86 can return (approximated) latencies for high latency
instructions such as division.
- Compute operand latencies for those defined by load multiple instructions,
e.g. ldm and those used by store multiple instructions, e.g. stm.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@115755 91177308-0d34-0410-b5e6-96231b3b80d8
stick with a constant estimate of 90% (branch predictors are good!), but we might find that we want to provide
more nuanced estimates in the future.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@115364 91177308-0d34-0410-b5e6-96231b3b80d8
Rather than having arbitrary cutoffs, actually try to cost model the conversion.
For now, the constants are tuned to more or less match our existing behavior, but these will be
changed to reflect realistic values as this work proceeds.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@114973 91177308-0d34-0410-b5e6-96231b3b80d8
into OptimizeCompareInstr.
This necessitates the passing of CmpValue around,
so widen the virtual functions to accomodate.
No functionality changes.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@114428 91177308-0d34-0410-b5e6-96231b3b80d8
the 'zero' bit down into the back-end. There are other cases where this logic
isn't sufficient, so they should be handled separately.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@113665 91177308-0d34-0410-b5e6-96231b3b80d8
iterator when an optimization took place. This allows us to do more insane
things with the code than just remove an instruction or two.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@113640 91177308-0d34-0410-b5e6-96231b3b80d8
take multiple cycles to decode.
For the current if-converter clients (actually only ARM), the instructions that
are predicated on false are not nops. They would still take machine cycles to
decode. Micro-coded instructions such as LDM / STM can potentially take multiple
cycles to decode. If-converter should take treat them as non-micro-coded
simple instructions.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@113570 91177308-0d34-0410-b5e6-96231b3b80d8
instruction in the class would be decoded to. Or zero if the number of
uOPs must be determined dynamically.
This will be used to determine the cost-effectiveness of predicating a
micro-coded instruction.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@113513 91177308-0d34-0410-b5e6-96231b3b80d8
relatively expensive comparison analyzer on each instruction. Also rename the
comparison analyzer method to something more in line with what it actually does.
This pass is will eventually be folded into the Machine CSE pass.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@110539 91177308-0d34-0410-b5e6-96231b3b80d8
This pass tries to remove comparison instructions when possible. For instance,
if you have this code:
sub r1, 1
cmp r1, 0
bz L1
and "sub" either sets the same flag as the "cmp" instruction or could be
converted to set the same flag, then we can eliminate the "cmp" instruction all
together. This is a important for ARM where the ALU instructions could set the
CPSR flag, but need a special suffix ('s') to do so.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@110423 91177308-0d34-0410-b5e6-96231b3b80d8
ARM/PPC/MSP430-specific code (which are the only targets that
implement the hook) can directly reference their target-specific
instrinfo classes.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@109171 91177308-0d34-0410-b5e6-96231b3b80d8