This patch modifies SelectionDAGBuilder to construct SDNodes with associated
NoSignedWrap, NoUnsignedWrap and Exact flags coming from IR BinaryOperator
instructions.
Added a new SDNode type called 'BinaryWithFlagsSDNode' to allow accessing
nsw/nuw/exact flags during codegen.
Patch by Marcello Maggioni.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@210467 91177308-0d34-0410-b5e6-96231b3b80d8
This patch teaches the backend how to simplify/canonicalize dag node
sequences normally introduced by the backend when promoting certain dag nodes
with illegal vector type.
This patch adds two new combine rules:
1) fold (shuffle (bitcast (BINOP A, B)), Undef, <Mask>) ->
(shuffle (BINOP (bitcast A), (bitcast B)), Undef, <Mask>)
2) fold (BINOP (shuffle (A, Undef, <Mask>)), (shuffle (B, Undef, <Mask>))) ->
(shuffle (BINOP A, B), Undef, <Mask>).
Both rules are only triggered on the type-legalized DAG.
In particular, rule 1. is a target specific combine rule that attempts
to sink a bitconvert into the operands of a binary operation.
Rule 2. is a target independet rule that attempts to move a shuffle
immediately after a binary operation.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@209930 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
If both vector args to vselect are concat_vectors and the condition is
constant and picks half a vector from each argument, convert the vselect
into a concat_vectors.
Added a test.
The ConvertSelectToConcatVector is assuming it doesn't get vselects with
arguments of, for example, <undef, undef, true, true>. Those get taken
care of in the checks above its call.
Reviewers: nadav, delena, grosbach, hfinkel
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D3916
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@209929 91177308-0d34-0410-b5e6-96231b3b80d8
An address only use of an extract element of a load can be simplified to a
load. Without this the result of the extract element is spilled to the
stack so that an address is available.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@209788 91177308-0d34-0410-b5e6-96231b3b80d8
This reverts r208640 (I've just XFAILed the test) because it broke ppc64/Linux
self-hosting. Because nearly every regression test triggers a segfault, I hope
this will be easy to fix.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@209747 91177308-0d34-0410-b5e6-96231b3b80d8
Right now the load may not get DCE'd because of the side-effect of updating
the base pointer.
This can happen if we lower a read-modify-write of an illegal larger type
(e.g. i48) such that the modification only affects one of the subparts (the
lower i32 part but not the higher i16 part). See the testcase.
In order to spot the dead load we need to revisit it when SimplifyDemandedBits
decided that the value of the load is masked off. This is the
CommitTargetLoweringOpt piece.
I checked compile time with ARM64 by sending SPEC bitcode files through llc.
No measurable change.
Fixes <rdar://problem/16031651>
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@208640 91177308-0d34-0410-b5e6-96231b3b80d8
For pattern like ((x >> C1) & Mask) << C2, DAG combiner may convert it
into (x >> (C1-C2)) & (Mask << C2), which makes pattern matching of ubfx
more difficult.
For example:
Given
%shr = lshr i64 %x, 4
%and = and i64 %shr, 15
%arrayidx = getelementptr inbounds [8 x [64 x i64]]* @arr, i64 0, %i64 2, i64 %and
%0 = load i64* %arrayidx
With current shift folding, it takes 3 instrs to compute base address:
lsr x8, x0, #1
and x8, x8, #0x78
add x8, x9, x8
If using ubfx, it only needs 2 instrs:
ubfx x8, x0, #4, #4
add x8, x9, x8, lsl #3
This fixes bug 19589
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@207702 91177308-0d34-0410-b5e6-96231b3b80d8
Otherwise the legalizer would just scalarize everything. Support for
mulhi in the targets isn't that great yet so on most targets we get
exactly the same scalarized output. Add a test for x86 vector udiv.
I had to disable the mulhi nodes on ARM because there aren't any patterns
for it. As far as I know ARM has instructions for getting the high part of
a multiply so this should be fixed.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@207315 91177308-0d34-0410-b5e6-96231b3b80d8
define below all header includes in the lib/CodeGen/... tree. While the
current modules implementation doesn't check for this kind of ODR
violation yet, it is likely to grow support for it in the future. It
also removes one layer of macro pollution across all the included
headers.
Other sub-trees will follow.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@206837 91177308-0d34-0410-b5e6-96231b3b80d8
This particular DAG combine is designed to kick in when both ConstantFPs will
end up being loaded via a litpool, however those nodes have a semi-legal
status, dictated by isFPImmLegal so in some cases there wouldn't have been a
litpool in the first place. Don't try to be clever in those circumstances.
Picked up while merging some AArch64 tests.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@206365 91177308-0d34-0410-b5e6-96231b3b80d8
We had disabled use of TBAA during CodeGen (even when otherwise using AA)
because the ptrtoint/inttoptr used by CGP for address sinking caused BasicAA to
miss basic type punning that it should catch (and, thus, we'd fail to override
TBAA when we should).
However, when AA is in use during CodeGen, CGP now uses normal GEPs and
bitcasts, instead of ptrtoint/inttoptr, when doing address sinking. As a
result, BasicAA should be able to make us do the right thing in the face of
type-punning, and it seems safe to enable use of TBAA again. self-hosting seems
fine on PPC64/Linux on the P7, with TBAA enabled and -misched=shuffle.
Note: We still don't update TBAA when merging stack slots, although because
BasicAA should now catch all such cases, this is no longer a blocking issue.
Nevertheless, I plan to commit code to deal with this properly in the near
future.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@206093 91177308-0d34-0410-b5e6-96231b3b80d8
sign/zero/any extensions. However a few places were not checking properly the
property of the load and were turning an indexed load into a regular extended
load. Therefore the indexed value was lost during the process and this was
triggering an assertion.
<rdar://problem/16389332>
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@205923 91177308-0d34-0410-b5e6-96231b3b80d8
When the loop vectorizer vectorizes code that uses the loop induction variable,
we often end up with IR like this:
%b1 = insertelement <2 x i32> undef, i32 %v, i32 0
%b2 = shufflevector <2 x i32> %b1, <2 x i32> undef, <2 x i32> zeroinitializer
%i = add <2 x i32> %b2, <i32 2, i32 3>
If the add in this example is not legal (as is the case on PPC with VSX), it
will be scalarized, and we'll end up with a number of extract_vector_elt nodes
with the vector shuffle as the input operand, and that vector shuffle is fed by
one or more build_vector nodes. By the time that vector operations are
expanded, visitEXTRACT_VECTOR_ELT will not create new extract_vector_elt by
looking through the vector shuffle (to make sure that no illegal operations are
created), and so the extract_vector_elt -> vector shuffle -> build_vector is
never simplified to an operand of the build vector.
By looking at build_vectors through a shuffle we fix this particular situation,
preventing a vector from being built, only to be deconstructed again (for the
scalarized add) -- an expensive proposition when this all needs to be done via
the stack. We probably want a more comprehensive fix here where we look back
recursively through any shuffles to any build_vectors or scalar_to_vectors,
etc. but that can come later.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@205179 91177308-0d34-0410-b5e6-96231b3b80d8
This patch renames method 'isConstantSplat' as 'getConstantSplatValue'
(mainly for consistency reasons), and rewrites its logic to ensure
that we always perform a legal 'cast<ConstantSDNode>'.
Added test shift-combine-crash.ll to verify that DAGCombiner no longer crashes with an assertion failure in the attempt to simplify a vector shift by a vector of all undef counts.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@204536 91177308-0d34-0410-b5e6-96231b3b80d8
This is already done for shifts. Allow it for rotations as well. E.g.:
(rotl:i32 x, (trunc (and y, 31))) -> (rotl:i32 x, (and (trunc y), 31))
Use the newly factored-out distributeTruncateThroughAnd.
With this patch and some X86.td tweaks we should be able to remove redundant
masking of the rotation amount like in the example above. HW implicitly
performs this masking.
The testcase will be added as part of the X86 patch.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@203316 91177308-0d34-0410-b5e6-96231b3b80d8
This is the new idiom:
x<<(y&31) | x>>((0-y)&31)
which is recognized as:
x ROTL (y&31)
The change refines matchRotateSub. In
Neg & (OpSize - 1) == (OpSize - Pos) & (OpSize - 1), if Pos is
Pos' & (OpSize - 1) we can just use Pos' instead of Pos.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@203315 91177308-0d34-0410-b5e6-96231b3b80d8
Slightly change the wording in the function comment. Originally, it can be
misunderstood as we turned the input into two subsequent rotates.
Better connect the comment which talks about Mask and the code which used
LoBits. Renamed variable to MaskLoBits.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@203314 91177308-0d34-0410-b5e6-96231b3b80d8
This patch teaches the DAGCombiner how to fold a binary OR between two
shufflevector into a single shuffle vector when possible.
The rules are:
1. fold (or (shuf A, V_0, MA), (shuf B, V_0, MB)) -> (shuf A, B, Mask1)
2. fold (or (shuf A, V_0, MA), (shuf B, V_0, MB)) -> (shuf B, A, Mask2)
The DAGCombiner can take advantage of the fact that OR is commutative and
compute two possible shuffle masks (Mask1 and Mask2) for the resulting
shuffle node.
Before folding a dag according to either rule 1 or 2, DAGCombiner verifies
that the resulting shuffle mask is legal for the target.
DAGCombiner would firstly try to fold according to 1.; If not possible
then it will try to fold according to 2.
If both Mask1 and Mask2 are illegal then we conservatively don't fold
the OR instruction.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@203156 91177308-0d34-0410-b5e6-96231b3b80d8
Currently this code is duplicated across visitSHL, visitSRA and visitSRL. The
plan is to add rotates as clients to this new function.
There is no functional change intended here.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@202908 91177308-0d34-0410-b5e6-96231b3b80d8
This extract-and-trunc vector optimization cannot work for i1 values as
currently implemented, and so I'm disabling this for now for i1 values. In the
future, this can be fixed properly.
Soon I'll commit support for i1 CR bit tracking in the PowerPC backend, and
this will be covered by one of the existing regression tests.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@202449 91177308-0d34-0410-b5e6-96231b3b80d8
shifted mask rather than masking and shifting separately.
The patch adds this transformation to the DAGCombiner:
(shl (and (setcc:i8v16 ...) N01C) N1C) -> (and (setcc:i8v16 ...) N01C<<N1C)
<rdar://problem/16054492>
Patch by Adam Nemet <anemet@apple.com>
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@201906 91177308-0d34-0410-b5e6-96231b3b80d8
BUILD_VECTOR nodes, e.g.:
(concat_vectors (BUILD_VECTOR a1, a2, a3, a4), (BUILD_VECTOR b1, b2, b3, b4))
->
(BUILD_VECTOR a1, a2, a3, a4, b1, b2, b3, b4)
This fixes an issue with AVX, where a sequence was not recognized as a 256-bit
vbroadcast due to the concat_vectors.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@201158 91177308-0d34-0410-b5e6-96231b3b80d8
During DAGCombine visitShiftByConstant assumes that certain binary operations
with only constant operands can always be folded successfully. This is no longer
true when the constant is opaque. This commit fixes visitShiftByConstant by not
performing the optimization for opaque constants. Otherwise we would end up in
an infinite DAGCombine loop.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@200900 91177308-0d34-0410-b5e6-96231b3b80d8
when the input is a concat_vectors and the insert replaces one of the
concat halves:
Lower half: fold (insert_subvector (concat_vectors X, Y), Z) ->
(concat_vectors Z, Y)
Upper half: fold (insert_subvector (concat_vectors X, Y), Z) ->
(concat_vectors X, Z)
This can be seen with the following IR:
define <8 x float> @lower_half(<4 x float> %v1, <4 x float> %v2, <4 x
float> %v3) {
%1 = shufflevector <4 x float> %v1, <4 x float> %v2, <8 x i32> <i32
0, i32 1, i32 2, i32 3, i32 4, i32 5, i32 6, i32 7>
%2 = tail call <8 x float> @llvm.x86.avx.vinsertf128.ps.256(<8 x
float> %1, <4 x float> %v3, i8 0)
The vinsertf128 intrinsic is converted into an insert_subvector node
in SelectionDAGBuilder.cpp.
Using AVX, without the patch this generates two vinsertf128 instructions:
vinsertf128 $1, %xmm1, %ymm0, %ymm0
vinsertf128 $0, %xmm2, %ymm0, %ymm0
With the patch this is optimized into:
vinsertf128 $1, %xmm1, %ymm2, %ymm0
Patch by Robert Lougher.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@200506 91177308-0d34-0410-b5e6-96231b3b80d8
Make sure that we don't introduce illegal build_vector dag nodes
when trying to fold a sign_extend of a build_vector.
This fixes a regression introduced by r200234.
Added test CodeGen/X86/fold-vector-sext-crash.ll
to verify that llc no longer crashes with an assertion failure
due to an illegal build_vector of type MVT::v4i64.
Thanks to Ilia Filippov for spotting this regression and for
providing a reproducible test case.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@200313 91177308-0d34-0410-b5e6-96231b3b80d8
Also update the comment, since it actually produces a
select (setcc) instead of select_cc.
It was checking and using the setcc result type for the
type of the sext, instead of the type of the compared items.
In my problem case, the sext was to i32 and was used as the setcc type,
but the expected type was i64.
No test since I haven't been able to hit the problem with
this on any in-tree targets.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@200249 91177308-0d34-0410-b5e6-96231b3b80d8
This patch teaches the DAGCombiner how to fold a sext/aext/zext dag node when
the operand in input is a build vector of constants (or UNDEFs).
The inability to fold a sext/zext of a constant build_vector was the root
cause of some pcg bugs affecting vselect expansion on x86-64 with AVX support.
Before this change, the DAGCombiner only knew how to fold a sext/zext/aext of a
ConstantSDNode.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@200234 91177308-0d34-0410-b5e6-96231b3b80d8
Issue outcomes from DAGCombiner::MergeConsequtiveStores, more precisely from
mem-ops sequence sorting.
Consider, how MergeConsequtiveStores works for next example:
store i8 1, a[0]
store i8 2, a[1]
store i8 3, a[1] ; a[1] again.
return ; DAG starts here
1. Method will collect all the 3 stores.
2. It sorts them by distance from the base pointer (farthest with highest
index).
3. It takes first consecutive non-overlapping stores and (if possible) replaces
them with a single store instruction.
The point is, we can't determine here which 'store' instruction
would be the second after sorting ('store 2' or 'store 3').
It happens that 'store 3' would be the second, and 'store 2' would be the third.
So after merging we have the next result:
store i16 (1 | 3 << 8), base ; is a[0] but bit-casted to i16
store i8 2, a[1]
So actually we swapped 'store 3' and 'store 2' and got wrong contents in a[1].
Fix: In sort routine just also take into account mem-op sequence number.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@200201 91177308-0d34-0410-b5e6-96231b3b80d8