This is a first pass at generating the jump table for the sjlj dispatch. It
currently generates something plausible, but hasn't been tested thoroughly.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@141140 91177308-0d34-0410-b5e6-96231b3b80d8
using llvm's public 'C' disassembler API now including annotations.
Hooked this up to Darwin's otool(1) so it can again print things like branch
targets for example this:
blx _puts
instead of this:
blx #-36
and includes support for annotations for branches to symbol stubs like:
bl 0x40 @ symbol stub for: _puts
and annotations for pc relative loads like this:
ldr r3, #8 @ literal pool for: Hello, world!
Also again can print the expression encoded in the Mach-O relocation entries for
things like this:
movt r0, :upper16:((_foo-_bar)+1234)
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@141129 91177308-0d34-0410-b5e6-96231b3b80d8
This code will replace the version in ARMAsmPrinter.cpp. It creates a new
machine basic block, which is the dispatch for the return from a longjmp
call. It then shoves the address of that machine basic block into the correct
place in the function context so that the EH runtime will jump to it directly
instead of having to go through a compare-and-jump-to-the-dispatch bit. This
should be more efficient in the common case.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@141031 91177308-0d34-0410-b5e6-96231b3b80d8
It's documented as a separate instruction to line up with the Thumb1
encodings, for which it really is a distinct instruction encoding.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@141020 91177308-0d34-0410-b5e6-96231b3b80d8
* Add a couple of Create methods to the ARMConstantPoolConstant class,
* Add its own version of getExistingMachineCPValue, and
* Modify hasSameValue to return false if the object isn't an ARMConstantPoolConstant.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@140935 91177308-0d34-0410-b5e6-96231b3b80d8
useful if an optimization assumes the stack has been realigned. Credit to
Eli for his assistance.
rdar://10043857
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@140924 91177308-0d34-0410-b5e6-96231b3b80d8
This uses less memory and it reduces the complexity of sub-class
operations:
- hasSubClassEq() and friends become O(1) instead of O(N).
- getCommonSubClass() becomes O(N) instead of O(N^2).
In the future, TableGen will infer register classes. This makes it
cheap to add them.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@140898 91177308-0d34-0410-b5e6-96231b3b80d8
Remove an assert that was expecting only the relevant 16bit portion for
the fixup being handled. Also kill some dead code in the T2 portion.
rdar://9653509
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@140861 91177308-0d34-0410-b5e6-96231b3b80d8
Encode the immediate into its 8-bit form as part of isel rather than later,
which simplifies things for mapping the encoding bits, allows the removal
of the custom disassembler decoding hook, makes the operand printer trivial,
and prepares things more cleanly for handling these in the asm parser.
rdar://10211428
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@140834 91177308-0d34-0410-b5e6-96231b3b80d8
This is used when we want to take the address of a machine basic block, but it's
not associated with a BB in LLVM IR.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@140823 91177308-0d34-0410-b5e6-96231b3b80d8
Build on previous patches to successfully distinguish between an M-series and A/R-series MSR and MRS instruction. These take different mask names and have a *slightly* different opcode format.
Add decoder and disassembler tests.
Improvement on the previous patch - successfully distinguish between valid v6m and v7m masks (one is a subset of the other). The patch had to be edited slightly to apply to ToT.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@140696 91177308-0d34-0410-b5e6-96231b3b80d8
current IR-level pass.
The old SjLj EH pass has some problems, especially with the new EH model. Most
significantly, it violates some of the new restrictions the new model has. For
instance, the 'dispatch' table wants to jump to the landing pad, but we cannot
allow that because only an invoke's unwind edge can jump to a landing pad. This
requires us to mangle the code something awful. In addition, we need to keep the
now dead landingpad instructions around instead of CSE'ing them because the
DWARF emitter uses that information (they are dead because no control flow edge
will execute them - the control flow edge from an invoke's unwind is superceded
by the edge coming from the dispatch).
Basically, this pass belongs not at the IR level where SSA is king, but at the
code-gen level, where we have more flexibility.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@140646 91177308-0d34-0410-b5e6-96231b3b80d8