Because the operands of a vector SETCC node can be of a different type from the
result (and often are), it can happen that even if we'd prefer to widen the
result type of the SETCC, the operands have been split instead. In this case,
the SETCC result also must be split. This mirrors what is done in
WidenVecRes_SELECT, and should be NFC elsewhere because if the operands are not
widened the following calls to GetWidenedVector will assert (which is what was
happening in the test case).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@232935 91177308-0d34-0410-b5e6-96231b3b80d8
It's not intended to be polymorphically deleted. Make FoldingSet
and ContextualFoldingSet final to avoid noise from -Wnon-virtual-dtor.
No functional change intended.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@232922 91177308-0d34-0410-b5e6-96231b3b80d8
A build directory with a name like `build-Werror` would hit a false
positive on these `CHECK-NOT`s before, since the actual error line looks
like:
.../build-Werror/bin/llvm-as <stdin>:1:2: error: ...
Switch to using:
CHECK-NOT: error:
(note the trailing semi-colon) to avoid matching almost any file path.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@232917 91177308-0d34-0410-b5e6-96231b3b80d8
strchr("123!", C) != nullptr is a common pattern to check if C is one
of 1, 2, 3 or !. If the largest element of the string is smaller than
the target's register size we can easily create a bitfield and just
do a simple test for set membership.
int foo(char C) { return strchr("123!", C) != nullptr; } now becomes
cmpl $64, %edi ## range check
sbbb %al, %al
movabsq $0xE000200000001, %rcx
btq %rdi, %rcx ## bit test
sbbb %cl, %cl
andb %al, %cl ## and the two conditions
andb $1, %cl
movzbl %cl, %eax ## returning an int
ret
(imho the backend should expand this into a series of branches, but
that's a different story)
The code is currently limited to bit fields that fit in a register, so
usually 64 or 32 bits. Sadly, this misses anything using alpha chars
or {}. This could be fixed by just emitting a i128 bit field, but that
can generate really ugly code so we have to find a better way. To some
degree this is also recreating switch lowering logic, but we can't
simply emit a switch instruction and thus change the CFG within
instcombine.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@232902 91177308-0d34-0410-b5e6-96231b3b80d8
Modern libc's have an SSE version of memchr which is a lot faster than our
hand-rolled version. In the past I was reluctant to use it because Darwin's
memchr used a naive ridiculously slow implementation, but that has been fixed
some versions ago.
Should have zero functional impact.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@232898 91177308-0d34-0410-b5e6-96231b3b80d8
Currently this is only used to tweak the backend's memcpy inlining
heuristics, testing that isn't very helpful. A real test case will
follow in the next commit, where this behavior would cause a real
miscompilation.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@232895 91177308-0d34-0410-b5e6-96231b3b80d8
r216771 introduced a change to MemoryDependenceAnalysis that allowed it
to reason about acquire/release operations. However, this change does
not ensure that the acquire/release operations pair. Unfortunately,
this leads to miscompiles as we won't see an acquire load as properly
memory effecting. This largely reverts r216771.
This fixes PR22708.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@232889 91177308-0d34-0410-b5e6-96231b3b80d8
TargetMachine::getSubtargetImpl routines.
This keeps the target independent code free of bare subtarget
calls while the remainder of the backends are migrated, or not
if they don't wish to support per-function subtargets as would
be needed for function multiversioning or LTO of disparate
cpu subarchitecture types, e.g.
clang -msse4.2 -c foo.c -emit-llvm -o foo.bc
clang -c bar.c -emit-llvm -o bar.bc
llvm-link foo.bc bar.bc -o baz.bc
llc baz.bc
and get appropriate code for what the command lines requested.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@232885 91177308-0d34-0410-b5e6-96231b3b80d8
of this add a test that shows we can generate code for functions
that specifically enable a subtarget feature.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@232884 91177308-0d34-0410-b5e6-96231b3b80d8
of this add a test that shows we can generate code with
for functions that differ by subtarget feature.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@232882 91177308-0d34-0410-b5e6-96231b3b80d8
bare target machine in preparation for the TargetMachine bare
getSubtarget/getSubtargetImpl calls going away.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@232880 91177308-0d34-0410-b5e6-96231b3b80d8
As preparation for removing the getSubtargetImpl() call from
TargetMachine go ahead and flip the switch on caching the function
dependent subtarget and remove the bare getSubtargetImpl call
from the X86 port. As part of this add a few tests that show we
can generate code and assemble on X86 based on features/cpu on
the Function.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@232879 91177308-0d34-0410-b5e6-96231b3b80d8
bare target machine in preparation for the TargetMachine bare
getSubtarget/getSubtargetImpl calls going away.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@232877 91177308-0d34-0410-b5e6-96231b3b80d8
thumb-ness similar to the rest of the Module level asm printing
infrastructure as debug info finalization happens after the function
may be missing.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@232875 91177308-0d34-0410-b5e6-96231b3b80d8
If we couldn't analyze its terminator (i.e., it's an indirectbr, or some
other weirdness), we can't safely re-if-convert a predicated block,
because we can't tell whether the predicated terminator can
fallthrough (it does).
Currently, we would completely ignore the fallthrough successor. In
the added testcase, this means we used to generate:
...
@ %entry:
cmp r5, #21
ittt ne
@ %cc1f:
cmpne r7, #42
@ %cc2t:
strne.w r5, [r8]
movne pc, r10
@ %cc1t:
...
Whereas the successor of %cc1f was originally %bb1.
With the fix, we get the correct:
...
@ %entry:
cmp r5, #21
itt eq
@ %cc1t:
streq.w r5, [r11]
moveq pc, r0
@ %cc1f:
cmp r7, #42
itt ne
@ %cc2t:
strne.w r5, [r8]
movne pc, r10
@ %bb1:
...
rdar://20192768
Differential Revision: http://reviews.llvm.org/D8509
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@232872 91177308-0d34-0410-b5e6-96231b3b80d8
vperm2* intrinsics are just shuffles.
In a few special cases, they're not even shuffles.
Optimizing intrinsics in InstCombine is better than
handling this in the front-end for at least two reasons:
1. Optimizing custom-written SSE intrinsic code at -O0 makes vector coders
really angry (and so I have regrets about some patches from last week).
2. Doing mask conversion logic in header files is hard to write and
subsequently read.
There are a couple of TODOs in this patch to complete this optimization.
Differential Revision: http://reviews.llvm.org/D8486
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@232852 91177308-0d34-0410-b5e6-96231b3b80d8
With this patch, for this one exact case, we'll generate:
blendps %xmm0, %xmm1, $1
instead of:
insertps %xmm0, %xmm1, $0
If there's a memory operand available for load folding and we're
optimizing for size, we'll still generate the insertps.
The detailed performance data motivation for this may be found in D7866;
in summary, blendps has 2-3x throughput vs. insertps on widely used chips.
Differential Revision: http://reviews.llvm.org/D8332
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@232850 91177308-0d34-0410-b5e6-96231b3b80d8
As part of PR22777, switch from `dyn_cast_or_null<>` to `cast<>` in most
`DIDescriptor` accessors. These classes are lightweight wrappers around
pointers, so the users should check for valid pointers before using
them.
This survives a Darwin clang -g bootstrap (after fixing testcases), but
it's possible the bots will complain about other configurations. I'll
fix any fallout as quickly as I can! Once this bakes for a bit I'll
remove the macros.
Note that `DebugLoc` implicitly gets stricter with this change as well,
since it forward to `DILocation`. Any code that's using `DebugLoc`
accessors should check `DebugLoc::isUnknown()` first. (BTW, I'm also
partway through a cleanup of the `DebugLoc` API to make it more obvious
what it is (a glorified pointer wrapper) and remove cruft from before
the Metadata/Value split. I'll commit soon.)
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@232844 91177308-0d34-0410-b5e6-96231b3b80d8
The code this patch removes was there to make sure the text sections went
before the dwarf sections. That is necessary because MachO uses offsets
relative to the start of the file, so adding a section can change relaxations.
The dwarf sections were being printed at the start just to produce symbols
pointing at the start of those sections.
The underlying issue was fixed in r231898. The dwarf sections are now printed
when they are about to be used, which is after we printed the text sections.
To make sure we don't regress, the patch makes the MachO streamer assert
if CodeGen puts anything unexpected after the DWARF sections.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@232842 91177308-0d34-0410-b5e6-96231b3b80d8
These are causing crashes in `DebugInfoFinder` after a WIP patch to
increase strictness of `DIDescriptor` accessors.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@232839 91177308-0d34-0410-b5e6-96231b3b80d8
Check return of `getDISubprogram()` before using it. A WIP patch makes
`DIDescriptor` accessors more strict (and would crash on this).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@232838 91177308-0d34-0410-b5e6-96231b3b80d8
The main differences are:
* Split in 32 and 64 bit functions.
* First switch on the Modifier so that we have only one non fully covered
switch.
* Map the fixup kind first to a x86_64 (or i386) specific enum, to make
it easy to handle cases like X86::reloc_riprel_4byte_movq_load.
* Switch on IsPCRel last, which reduces code duplication.
Fixes pr22308.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@232837 91177308-0d34-0410-b5e6-96231b3b80d8
`DL` might be null, so check for that before using accessors. A WIP
patch to make `DIDescriptors` more strict fails otherwise.
As a bonus, I think the logic is easier to follow now (despite the extra
nesting depth).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@232836 91177308-0d34-0410-b5e6-96231b3b80d8
A WIP patch makes `DIDescriptor` accessors more strict, which in turn
causes the `DebugInfoFinder` to crash on wrongly typed `!dbg`
attachments. Catch that error up front in
`Verifier::visitInstruction()`.
Also remove a test that we "handle" invalid `!dbg` attachments, added
back in r99938. We don't want to handle those anymore.
Note: I'm *not* recursing and verifying the debug info graph reachable
from this node; that work is already done by `verifyDebugInfo()`.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@232834 91177308-0d34-0410-b5e6-96231b3b80d8
Don't use the accessors in `DIImportedEntity` on a null pointer. (A WIP
patch to make `DIDescriptor` accessors more strict crashes here
otherwise.)
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@232833 91177308-0d34-0410-b5e6-96231b3b80d8