test cases where there were a lot of relocations applied relative to a large
rodata section. Gas would create a symbol for each of these whereas we would
be relative to the beginning of the rodata section. This change mimics what
gas does.
Patch by Jack Carter.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@146468 91177308-0d34-0410-b5e6-96231b3b80d8
of the targets we know about. Because this is cached, rebuilds won't
detect when new targets show up. It's also a bit simpler to just say
"all". If users want to restrict the target set, they can still do so,
and then the cache will preserve what they have explicitly set this
field to.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@146467 91177308-0d34-0410-b5e6-96231b3b80d8
undefined result. This adds new ISD nodes for the new semantics,
selecting them when the LLVM intrinsic indicates that the undef behavior
is desired. The new nodes expand trivially to the old nodes, so targets
don't actually need to do anything to support these new nodes besides
indicating that they should be expanded. I've done this for all the
operand types that I could figure out for all the targets. Owners of
various targets, please review and let me know if any of these are
incorrect.
Note that the expand behavior is *conservatively correct*, and exactly
matches LLVM's current behavior with these operations. Ideally this
patch will not change behavior in any way. For example the regtest suite
finds the exact same instruction sequences coming out of the code
generator. That's why there are no new tests here -- all of this is
being exercised by the existing test suite.
Thanks to Duncan Sands for reviewing the various bits of this patch and
helping me get the wrinkles ironed out with expanding for each target.
Also thanks to Chris for clarifying through all the discussions that
this is indeed the approach he was looking for. That said, there are
likely still rough spots. Further review much appreciated.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@146466 91177308-0d34-0410-b5e6-96231b3b80d8
Constant pool entries with different alignment may cause more alignment
padding to be inserted. Compute the amount of padding needed, and try to
pick the location that requires the least amount of padding.
Also take the extra padding into account when the water is above the
use.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@146458 91177308-0d34-0410-b5e6-96231b3b80d8
This should always be done as a matter of principal. I don't have a
case that exposes the problem. I just noticed this recently while
scanning the code and realized I meant to fix it long ago.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@146438 91177308-0d34-0410-b5e6-96231b3b80d8
subdirectories to traverse into.
- Originally I wanted to avoid this and just autoscan, but this has one key
flaw in that new subdirectories can not automatically trigger a rerun of the
llvm-build tool. This is particularly a pain when switching back and forth
between trees where one has added a subdirectory, as the dependencies will
tend to be wrong. This will also eliminates FIXME implicitly.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@146436 91177308-0d34-0410-b5e6-96231b3b80d8
If we create new intervals for a variable that is being spilled, then those new intervals are not guaranteed to also spill. This means that anything reading from the original spilling value might not get the correct value if spills were missed.
Fixes <rdar://problem/10546864>
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@146428 91177308-0d34-0410-b5e6-96231b3b80d8
These modifiers simply select either the low or high D subregister of a Neon
Q register. I've also removed the unimplemented 'p' modifier, which turns out
to be a bit different than the comment here suggests and as far as I can tell
was only intended for internal use in Apple's version of gcc.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@146417 91177308-0d34-0410-b5e6-96231b3b80d8
detected in the forward-CFG DFS. This prevents the reverse-CFG from
visiting blocks inside loops after blocks that dominate them in the
case where loops have multiple exits.
No testcase, because this fixes a bug which in practice only shows
up in a full optimizer run, due to the use-list order.
This fixes rdar://10422791 and others.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@146408 91177308-0d34-0410-b5e6-96231b3b80d8
Downgrade the alignment of the initial constant island when constant
pool entries are moved elsewhere.
This is all gated by -arm-align-constant-islands.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@146391 91177308-0d34-0410-b5e6-96231b3b80d8
Order constant pool entries by descending alignment in the initial
island to ensure packing and correct alignment. When the command line
flag is set, also align the basic block containing the constant pool
entries.
This is only a partial implementation of constant island alignment. More
to come.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@146375 91177308-0d34-0410-b5e6-96231b3b80d8
I followed three heuristics for deciding whether to set 'true' or
'false':
- Everything target independent got 'true' as that is the expected
common output of the GCC builtins.
- If the target arch only has one way of implementing this operation,
set the flag in the way that exercises the most of codegen. For most
architectures this is also the likely path from a GCC builtin, with
'true' being set. It will (eventually) require lowering away that
difference, and then lowering to the architecture's operation.
- Otherwise, set the flag differently dependending on which target
operation should be tested.
Let me know if anyone has any issue with this pattern or would like
specific tests of another form. This should allow the x86 codegen to
just iteratively improve as I teach the backend how to differentiate
between the two forms, and everything else should remain exactly the
same.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@146370 91177308-0d34-0410-b5e6-96231b3b80d8
intrinsic syntax.
Now that this is explicitly covered, I plan to upgrade the existing test
suite to use an explicit immediate. Note that I plan to specify 'true'
in most places rather than the auto-upgraded value as that is the far
more common value to end up here as that is the value coming from GCC's
builtins. The only place I'm likely to put a 'false' in is when testing
x86 which actually has different instructions for the two variants.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@146369 91177308-0d34-0410-b5e6-96231b3b80d8