Add some generic SchedWrites and assign resources for Swift and Cortex A9.
Reapply of r183257. (Removed empty InstRW for division on swift)
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@183319 91177308-0d34-0410-b5e6-96231b3b80d8
An instruction with less than 3 inputs is trivially a fast immediate shift.
Reapply of 183256, should not have caused the tablegen segfault on linux either.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@183314 91177308-0d34-0410-b5e6-96231b3b80d8
The ARM backend did not expect LDRBi12 to hold a constant pool operand.
Allow for LLVM to deal with the instruction similar to how it deals with
LDRi12.
This fixes PR16215.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@183238 91177308-0d34-0410-b5e6-96231b3b80d8
NOTE: If this broke your out-of-tree backend, in *RegisterInfo.td, change
the instances of SubRegIndex that have a comps template arg to use the
ComposedSubRegIndex class instead.
In TableGen land, this adds Size and Offset attributes to SubRegIndex,
and the ComposedSubRegIndex class, for which the Size and Offset are
computed by TableGen. This also adds an accessor in MCRegisterInfo, and
Size/Offsets for the X86 and ARM subreg indices.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@183020 91177308-0d34-0410-b5e6-96231b3b80d8
These instructions are deprecated oddities, but we still need to be able to
disassemble (and reassemble) them if and when they're encountered.
Patch by Amaury de la Vieuville.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@183011 91177308-0d34-0410-b5e6-96231b3b80d8
The disassembly of VEXT instructions was too lax in the bits checked. This
fixes the case where the instruction affects Q-registers but a misaligned lane
was specified (should be UNDEFINED).
Patch by Amaury de la Vieuville
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@183003 91177308-0d34-0410-b5e6-96231b3b80d8
r182877 broke MCJIT tests on ARM and r182937 was working around another failure
by r182877.
This should make the ARM bots green.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@182960 91177308-0d34-0410-b5e6-96231b3b80d8
Fixes PR16146: gdb.base__call-ar-st.exp fails after
pre-RA-sched=source fixes.
Patch by Xiaoyi Guo!
This also fixes an unsupported dbg.value test case. Codegen was
previously incorrect but the test was passing by luck.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@182885 91177308-0d34-0410-b5e6-96231b3b80d8
FastISel was only enabled for iOS ARM and Thumb2, this patch enables it
for ARM (not Thumb2) on Linux and NaCl.
Thumb2 support needs a bit more work, mainly around register class
restrictions.
The patch punts to SelectionDAG when doing TLS relocation on non-Darwin
targets. I will fix this and other FastISel-to-SelectionDAG failures in
a separate patch.
The patch also forces FastISel to retain frame pointers: iOS always
keeps them for backtracking (so emitted code won't change because of
this), but Linux was getting much worse code that was incorrect when
using big frames (such as test-suite's lencod). I'll also fix this in a
later patch, it will probably require a peephole so that FastISel
doesn't rematerialize frame pointers back-to-back.
The test changes are straightforward, similar to:
http://lists.cs.uiuc.edu/pipermail/llvm-commits/Week-of-Mon-20130513/174279.html
They also add a vararg test that got dropped in that change.
I ran all of test-suite on A15 hardware with --optimize-option=-O0 and
all the tests pass.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@182877 91177308-0d34-0410-b5e6-96231b3b80d8
Tidy up three places where the register class for ARM and Thumb wasn't
restrictive enough:
- No PC dest for reg-reg add/orr/sub.
- No PC dest for shifts.
- No PC or SP for Thumb2 reg-imm add.
I encountered this while combining FastISel with
-verify-machineinstrs. These instructions defined registers whose
classes weren't restrictive enough, and the uses failed
verification. They're also undefined in the ISA, or would produce code
that FastISel wouldn't want. This doesn't fix the register class
narrowing issue (where uses should restrict definitions), and isn't
thorough, but it's a small step in the right direction.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@182863 91177308-0d34-0410-b5e6-96231b3b80d8
Change SelectionDAG::getXXXNode() interfaces as well as call sites of
these functions to pass in SDLoc instead of DebugLoc.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@182703 91177308-0d34-0410-b5e6-96231b3b80d8
- Ressurect old MCDisassemble API to soften transition.
- Extend MCTargetDesc to set target specific symbolizer.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@182688 91177308-0d34-0410-b5e6-96231b3b80d8
There was exactly one caller using this API right, the others were relying on
specific behavior of the default implementation. Since it's too hard to use it
right just remove it and standardize on the default behavior.
Defines away PR16132.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@182636 91177308-0d34-0410-b5e6-96231b3b80d8
This patch builds on some existing code to do CFG reconstruction from
a disassembled binary:
- MCModule represents the binary, and has a list of MCAtoms.
- MCAtom represents either disassembled instructions (MCTextAtom), or
contiguous data (MCDataAtom), and covers a specific range of addresses.
- MCBasicBlock and MCFunction form the reconstructed CFG. An MCBB is
backed by an MCTextAtom, and has the usual successors/predecessors.
- MCObjectDisassembler creates a module from an ObjectFile using a
disassembler. It first builds an atom for each section. It can also
construct the CFG, and this splits the text atoms into basic blocks.
MCModule and MCAtom were only sketched out; MCFunction and MCBB were
implemented under the experimental "-cfg" llvm-objdump -macho option.
This cleans them up for further use; llvm-objdump -d -cfg now generates
graphviz files for each function found in the binary.
In the future, MCObjectDisassembler may be the right place to do
"intelligent" disassembly: for example, handling constant islands is just
a matter of splitting the atom, using information that may be available
in the ObjectFile. Also, better initial atom formation than just using
sections is possible using symbols (and things like Mach-O's
function_starts load command).
This brings two minor regressions in llvm-objdump -macho -cfg:
- The printing of a relocation's referenced symbol.
- An annotation on loop BBs, i.e., which are their own successor.
Relocation printing is replaced by the MCSymbolizer; the basic CFG
annotation will be superseded by more related functionality.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@182628 91177308-0d34-0410-b5e6-96231b3b80d8
This is a basic first step towards symbolization of disassembled
instructions. This used to be done using externally provided (C API)
callbacks. This patch introduces:
- the MCSymbolizer class, that mimics the same functions that were used
in the X86 and ARM disassemblers to symbolize immediate operands and
to annotate loads based off PC (for things like c string literals).
- the MCExternalSymbolizer class, which implements the old C API.
- the MCRelocationInfo class, which provides a way for targets to
translate relocations (either object::RelocationRef, or disassembler
C API VariantKinds) to MCExprs.
- the MCObjectSymbolizer class, which does symbolization using what it
finds in an object::ObjectFile. This makes simple symbolization (with
no fancy relocation stuff) work for all object formats!
- x86-64 Mach-O and ELF MCRelocationInfos.
- A basic ARM Mach-O MCRelocationInfo, that provides just enough to
support the C API VariantKinds.
Most of what works in otool (the only user of the old symbolization API
that I know of) for x86-64 symbolic disassembly (-tvV) works, namely:
- symbol references: call _foo; jmp 15 <_foo+50>
- relocations: call _foo-_bar; call _foo-4
- __cf?string: leaq 193(%rip), %rax ## literal pool for "hello"
Stub support is the main missing part (because libObject doesn't know,
among other things, about mach-o indirect symbols).
As for the MCSymbolizer API, instead of relying on the disassemblers
to call the tryAdding* methods, maybe this could be done automagically
using InstrInfo? For instance, even though PC-relative LEAs are used
to get the address of string literals in a typical Mach-O file, a MOV
would be used in an ELF file. And right now, the explicit symbolization
only recognizes PC-relative LEAs. InstrInfo should have already have
most of what is needed to know what to symbolize, so this can
definitely be improved.
I'd also like to remove object::RelocationRef::getValueString (it seems
only used by relocation printing in objdump), as simply printing the
created MCExpr is definitely enough (and cleaner than string concats).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@182625 91177308-0d34-0410-b5e6-96231b3b80d8
This implements the @llvm.readcyclecounter intrinsic as the specific
MRC instruction specified in the ARM manuals for CPUs with the Power
Management extensions.
Older CPUs had slightly different methods which may also have to be
implemented eventually, but this should cover all v7 cases.
rdar://problem/13939186
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@182603 91177308-0d34-0410-b5e6-96231b3b80d8
Performance monitors, including a basic cycle counter, are an official
extension in the ARMv7 specification. This adds support for enabling and
disabling them, orthogonally from CPU selection.
rdar://problem/13939186
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@182602 91177308-0d34-0410-b5e6-96231b3b80d8
Introduction:
In case when stack alignment is 8 and GPRs parameter part size is not N*8:
we add padding to GPRs part, so part's last byte must be recovered at
address K*8-1.
We need to do it, since remained (stack) part of parameter starts from
address K*8, and we need to "attach" "GPRs head" without gaps to it:
Stack:
|---- 8 bytes block ----| |---- 8 bytes block ----| |---- 8 bytes...
[ [padding] [GPRs head] ] [ ------ Tail passed via stack ------ ...
FIX:
Note, once we added padding we need to correct *all* Arg offsets that are going
after padded one. That's why we need this fix: Arg offsets were never corrected
before this patch. See new test-cases included in patch.
We also don't need to insert padding for byval parameters that are stored in GPRs
only. We need pad only last byval parameter and only in case it outsides GPRs
and stack alignment = 8.
Though, stack area, allocated for recovered byval params, must satisfy
"Size mod 8 = 0" restriction.
This patch reduces stack usage for some cases:
We can reduce ArgRegsSaveArea since inner N*4 bytes sized byval params my be
"packed" with alignment 4 in some cases.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@182237 91177308-0d34-0410-b5e6-96231b3b80d8
This patch matches GCC behavior: the code used to only allow unaligned
load/store on ARM for v6+ Darwin, it will now allow unaligned load/store
for v6+ Darwin as well as for v7+ on Linux and NaCl.
The distinction is made because v6 doesn't guarantee support (but LLVM
assumes that Apple controls hardware+kernel and therefore have
conformant v6 CPUs), whereas v7 does provide this guarantee (and
Linux/NaCl behave sanely).
The patch keeps the -arm-strict-align command line option, and adds
-arm-no-strict-align. They behave similarly to GCC's -mstrict-align and
-mnostrict-align.
I originally encountered this discrepancy in FastIsel tests which expect
unaligned load/store generation. Overall this should slightly improve
performance in most cases because of reduced I$ pressure.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@182175 91177308-0d34-0410-b5e6-96231b3b80d8
This patch matches GCC behavior: the code used to only allow unaligned
load/store on ARM for v6+ Darwin, it will now allow unaligned load/store for
v6+ Darwin as well as for v7+ on other targets.
The distinction is made because v6 doesn't guarantee support (but LLVM assumes
that Apple controls hardware+kernel and therefore have conformant v6 CPUs),
whereas v7 does provide this guarantee (and Linux behaves sanely).
Overall this should slightly improve performance in most cases because of
reduced I$ pressure.
Patch by JF Bastien
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@181897 91177308-0d34-0410-b5e6-96231b3b80d8
The transformation happening here is that we want to turn a
"mul(ext(X), ext(X))" into a "vmull(X, X)", stripping off the extension. We have
to make sure that X still has a valid vector type - possibly recreate an
extension to a smaller type. In case of a extload of a memory type smaller than
64 bit we used create a ext(load()). The problem with doing this - instead of
recreating an extload - is that an illegal type is exposed.
This patch fixes this by creating extloads instead of ext(load()) sequences.
Fixes PR15970.
radar://13871383
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@181842 91177308-0d34-0410-b5e6-96231b3b80d8