DAGCombiner::ReduceLoadWidth was converting (trunc i32 (shl i64 v, 32))
into (shl i32 v, 32) into undef. To prevent this, check the shift count
against the final result size.
Patch by: Kevin Schoedel
Reviewed by: Nadav Rotem
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@174972 91177308-0d34-0410-b5e6-96231b3b80d8
Vectors were being manually scalarized by the backend. Instead,
let the target-independent code do all of the work. The manual
scalarization was from a time before good target-independent support
for scalarization in LLVM. However, this forces us to specially-handle
vector loads and stores, which we can turn into PTX instructions that
produce/consume multiple operands.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@174968 91177308-0d34-0410-b5e6-96231b3b80d8
Lower reverse shuffles to a vrev64 and a vext instruction instead of the default
legalization of storing and loading to the stack. This is important because we
generate reverse shuffles in the loop vectorizer when we reverse store to an
array.
uint8_t Arr[N];
for (i = 0; i < N; ++i)
Arr[N - i - 1] = ...
radar://13171760
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@174929 91177308-0d34-0410-b5e6-96231b3b80d8
This gives a DiagnosticType to all AsmOperands in sight. This replaces all
"invalid operand" diagnostics with something more specific. The messages given
should still be sufficiently vague that they're not usually actively misleading
when LLVM guesses your instruction incorrectly.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@174871 91177308-0d34-0410-b5e6-96231b3b80d8
Handle chains in which the same offset is used for both loads and
stores to the same array.
Fixes rdar://11410078.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@174789 91177308-0d34-0410-b5e6-96231b3b80d8
same so we put in the comment field an indicator when we think we are
emitting the 16 bit version. For the direct object emitter, the difference is
important as well as for other passes which need an accurate count of
program size. There will be other similar putbacks to this for various
instructions.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@174747 91177308-0d34-0410-b5e6-96231b3b80d8
Previously, even when a pre-increment load or store was generated,
we often needed to keep a copy of the original base register for use
with other offsets. If all of these offsets are constants (including
the offset which was combined into the addressing mode), then this is
clearly unnecessary. This change adjusts these other offsets to use the
new incremented address.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@174746 91177308-0d34-0410-b5e6-96231b3b80d8
Aside from the question of whether we report a warning or an error when we
can't satisfy a requested stack object alignment, the current implementation
of this is not good. We're not providing any source location in the diagnostics
and the current warning is not connected to any warning group so you can't
control it. We could improve the source location somewhat, but we can do a
much better job if this check is implemented in the front-end, so let's do that
instead. <rdar://problem/13127907>
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@174741 91177308-0d34-0410-b5e6-96231b3b80d8
Thanks to help from Nadav and Hal, I have a more reasonable (and even
correct!) approach. This specifically penalizes the insertelement
and extractelement operations for the performance hit that will occur
on PowerPC processors.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@174725 91177308-0d34-0410-b5e6-96231b3b80d8
isn't using the default calling convention. However, if the transformation is
from a call to inline IR, then the calling convention doesn't matter.
rdar://13157990
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@174724 91177308-0d34-0410-b5e6-96231b3b80d8
Adds a function to target transform info to query for the cost of address
computation. The cost model analysis pass now also queries this interface.
The code in LoopVectorize adds the cost of address computation as part of the
memory instruction cost calculation. Only there, we know whether the instruction
will be scalarized or not.
Increase the penality for inserting in to D registers on swift. This becomes
necessary because we now always assume that address computation has a cost and
three is a closer value to the architecture.
radar://13097204
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@174713 91177308-0d34-0410-b5e6-96231b3b80d8
allowed size for the instruction. This code uses RegScavenger to fix this.
We sometimes need 2 registers for Mips16 so we must handle things
differently than how register scavenger is normally used.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@174696 91177308-0d34-0410-b5e6-96231b3b80d8
This reverts commit 3854a5d90fee52af1065edbed34521fff6cdc18d.
This causes a clang unit test to hang: vtable-available-externally.cpp.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@174692 91177308-0d34-0410-b5e6-96231b3b80d8
These instructions compare two floating point values and return an
integer true (-1) or false (0) value.
When compiling code generated by the Mesa GLSL frontend, the SET*_DX10
instructions save us four instructions for most branch decisions that
use floating-point comparisons.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@174609 91177308-0d34-0410-b5e6-96231b3b80d8
The test is a binary placed in test/DebugInfo/Inputs, with a source C
file used for reference/reproducing. The source's first line is a clang
build command for reproducing the binary.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@174543 91177308-0d34-0410-b5e6-96231b3b80d8
account. Atoms use LEA for updating SP in prologs/epilogs, and the
exact LEA opcode depends on the data model.
Also reapplying the test case which was added and then reverted
(because of Atom failures), this time specifying explicitly the CPU in
addition to the triple. The test case now checks all variations (data
mode, cpu Atom vs. Core).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@174542 91177308-0d34-0410-b5e6-96231b3b80d8