Before this patch code wanting to create temporary labels for a given entity
(function, cu, exception range, etc) had to keep its own counter to have stable
symbol names.
createTempSymbol would still add a suffix to make sure a new symbol was always
returned, but it kept a single counter. Because of that, if we were to use
just createTempSymbol("cu_begin"), the label could change from cu_begin42 to
cu_begin43 because some other code started using temporary labels.
Simplify this by just keeping one counter per prefix and removing the various
specialized counters.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@232535 91177308-0d34-0410-b5e6-96231b3b80d8
Now that we check `MDExpression` during `-verify` (r232299), make
the `DIExpression` wrapper more strict:
- remove redundant checks in `DebugInfoVerifier`,
- overload `get()` to `cast_or_null<MDExpression>` (superseding
`getRaw()`),
- stop checking for null in any accessor, and
- remove `DIExpression::Verify()` entirely in favour of
`MDExpression::isValid()`.
There is still some logic in this class, mostly to do with high-level
iterators; I'll defer cleaning up those until the rest of the wrappers
are similarly strict.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@232412 91177308-0d34-0410-b5e6-96231b3b80d8
This lets us pass the symbol to the constructor and avoid the mutable field.
This also opens the way for outputting the symbol only when needed, instead
of outputting them at the start of the file.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@231859 91177308-0d34-0410-b5e6-96231b3b80d8
This makes code that uses section relative expressions (debug info) simpler and
less brittle.
This is still a bit awkward as the symbol is created late and has to be
stored in a mutable field.
I will move the symbol creation earlier in the next patch.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@231802 91177308-0d34-0410-b5e6-96231b3b80d8
(They are called emitDwarfDIE and emitDwarfAbbrevs in their new home)
llvm-dsymutil wants to reuse that code, but it doesn't have a DwarfUnit or
a DwarfDebug object to call those. It has access to an AsmPrinter though.
Having emitDIE in the AsmPrinter also removes the DwarfFile dependency
on DwarfDebug, and thus the patch drops that field.
Differential Revision: http://reviews.llvm.org/D8024
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@231210 91177308-0d34-0410-b5e6-96231b3b80d8
TargetRegisterInfo. DebugLocEntry now holds a buffer with the raw bytes
of the pre-calculated DWARF expression.
Ought to be NFC, but it does slightly alter the output format of the
textual assembly.
This reapplies 230930 without the assertion in DebugLocEntry::finalize()
because not all Machine registers can be lowered into DWARF register
numbers and floating point constants cannot be expressed.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@231023 91177308-0d34-0410-b5e6-96231b3b80d8
TargetRegisterInfo. DebugLocEntry now holds a buffer with the raw bytes
of the pre-calculated DWARF expression.
Ought to be NFC, but it does slightly alter the output format of the
textual assembly.
This reapplies 230930 with a relaxed assertion in DebugLocEntry::finalize()
that allows for empty DWARF expressions for constant FP values.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@230975 91177308-0d34-0410-b5e6-96231b3b80d8
TargetRegisterInfo. DebugLocEntry now holds a buffer with the raw bytes
of the pre-calculated DWARF expression.
Ought to be NFC, but it does slightly alter the output format of the
textual assembly.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@230930 91177308-0d34-0410-b5e6-96231b3b80d8
table entry. This happens when SROA splits up an alloca and the resulting
allocas cannot be lowered to SSA values because their address is passed
to a function.
Fixes PR22502.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@228764 91177308-0d34-0410-b5e6-96231b3b80d8
utils/sort_includes.py.
I clearly haven't done this in a while, so more changed than usual. This
even uncovered a missing include from the InstrProf library that I've
added. No functionality changed here, just mechanical cleanup of the
include order.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@225974 91177308-0d34-0410-b5e6-96231b3b80d8
emitDebugLocValue() into DwarfExpression.
Ought to be NFC, but it actually uncovered a bug in the debug-loc-asan.ll
testcase. The testcase checks that the address of variable "y" is stored
at [RSP+16], which also lines up with the comment.
It also check(ed) that the *value* of "y" is stored in RDI before that,
but that is actually incorrect, since RDI is the very value that is
stored in [RSP+16]. Here's the assembler output:
movb 2147450880(%rcx), %r8b
#DEBUG_VALUE: bar:y <- RDI
cmpb $0, %r8b
movq %rax, 32(%rsp) # 8-byte Spill
movq %rsi, 24(%rsp) # 8-byte Spill
movq %rdi, 16(%rsp) # 8-byte Spill
.Ltmp3:
#DEBUG_VALUE: bar:y <- [RSP+16]
Fixed the comment to spell out the correct register and the check to
expect an address rather than a value.
Note that the range that is emitted for the RDI location was and is still
wrong, it claims to begin at the function prologue, but really it should
start where RDI is first assigned.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@225851 91177308-0d34-0410-b5e6-96231b3b80d8
dsymutil would like to use all the AsmPrinter/MCStreamer infrastructure
to stream out the DWARF. In order to do so, it will reuse the DIE object
and so this header needs to be public.
The interface exposed here has some corners that cannot be used without a
DwarfDebug object, but clients that want to stream Dwarf can just avoid
these.
Differential Revision: http://reviews.llvm.org/D6695
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@225208 91177308-0d34-0410-b5e6-96231b3b80d8
This is the first big step to allowing gmlt-like inline scope
information in the skeleton CU. While this commit doesn't change the
functionality, it's only a small step to call
"constructAbstractSubprogramDIE" on both the InfoHolder and the
SkeletonHolder (when in use) and that will at least create the abstract
SP dies in that case, though still not creating the other subprograms.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@221051 91177308-0d34-0410-b5e6-96231b3b80d8
(part of refactoring to allow subprogram emission in both the skeleton
and main units to enable -gmlt-like data to be included in the skeleton
for live inlined backtracing purposes)
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@220578 91177308-0d34-0410-b5e6-96231b3b80d8
It was only being used as a flag to identify the lack of debug info from
within endModule - use the section labels for that instead.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@220575 91177308-0d34-0410-b5e6-96231b3b80d8
While refactoring this code I was confused by both the name I had
introduced (addNonArgumentVariable... but it has all this logic to
handle argument numbering and keep things in order?) and by the
redundancy. Seems when I fixed the misordered inlined argument handling,
I didn't realize it was mostly redundant with the argument ordering code
(which I may've also written, I'm not sure). So let's just rely on the
more general case.
The only oddity in output this produces is that it means when we emit
all the variables for the current function, we don't track when we've
finished the argument variables and are about to start the local
variables and insert DW_AT_unspecified_parameters (for varargs
functions) there. Instead it ends up after the local variables, scopes,
etc. But this isn't invalid and doesn't cause DWARF consumers problems
that I know of... so we'll just go with that because it makes the code
nice & simple.
(though, let's see what the buildbots have to say about this - *crosses
fingers*)
There will be some cleanup commits to follow to remove the now trivial
wrappers, etc.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@220527 91177308-0d34-0410-b5e6-96231b3b80d8
Now that we're sure the only root (non-abstract) scope is the current
function scope, there's no need for isCurrentFunctionScope, the property
can be tested directly instead.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@220451 91177308-0d34-0410-b5e6-96231b3b80d8
This introduces access to the AbstractSPDies map from DwarfDebug so
DwarfCompileUnit can access it. Eventually this'll sink down to
DwarfFile, but it'll still be generically accessible - not much
encapsulation to provide it. (constructInlinedScopeDIE could stay
further up, in DwarfFile to avoid exposing this - but I don't think
that's particularly better)
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@219411 91177308-0d34-0410-b5e6-96231b3b80d8
(& add a few accessors/make a couple of things public for this - it's a
bit of a toss-up, but I think I prefer it this way, keeping some more of
the meaty code down in DwarfCompileUnit - if only to make for smaller
implementation files, etc)
I think we could simplify range handling a bit if we removed the range
lists from each unit and just put a single range list on DwarfDebug,
similar to address pooling.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@219370 91177308-0d34-0410-b5e6-96231b3b80d8
One of many steps to generalize subprogram emission to both the DWO and
non-DWO sections (to emit -gmlt-like data under fission). Once the
functions are pushed down into DwarfCompileUnit some of the data
structures will be pushed at least into DwarfFile so that they can be
unique per-file, allowing emission to both files independently.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@219345 91177308-0d34-0410-b5e6-96231b3b80d8
It was just calling a bunch of DwarfUnit functions anyway, as can be
seen by the simplification of removing "TheCU" from all the function
calls in the implementation.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@219103 91177308-0d34-0410-b5e6-96231b3b80d8
This requires exposing some of the current function state from
DwarfDebug. I hope there's not too much of that to expose as I go
through all the functions, but it still seems nicer to expose singular
data down to multiple consumers, than have consumers expose raw mapping
data structures up to DwarfDebug for building subprograms.
Part of a series of refactoring to allow subprograms in both the
skeleton and dwo CUs under Fission.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@219060 91177308-0d34-0410-b5e6-96231b3b80d8
One of many things to sink down into DwarfCompileUnit to allow handling
of subprograms in both the skeleton and dwo CU under Fission.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@219058 91177308-0d34-0410-b5e6-96231b3b80d8
argument of the llvm.dbg.declare/llvm.dbg.value intrinsics.
Previously, DIVariable was a variable-length field that has an optional
reference to a Metadata array consisting of a variable number of
complex address expressions. In the case of OpPiece expressions this is
wasting a lot of storage in IR, because when an aggregate type is, e.g.,
SROA'd into all of its n individual members, the IR will contain n copies
of the DIVariable, all alike, only differing in the complex address
reference at the end.
By making the complex address into an extra argument of the
dbg.value/dbg.declare intrinsics, all of the pieces can reference the
same variable and the complex address expressions can be uniqued across
the CU, too.
Down the road, this will allow us to move other flags, such as
"indirection" out of the DIVariable, too.
The new intrinsics look like this:
declare void @llvm.dbg.declare(metadata %storage, metadata %var, metadata %expr)
declare void @llvm.dbg.value(metadata %storage, i64 %offset, metadata %var, metadata %expr)
This patch adds a new LLVM-local tag to DIExpressions, so we can detect
and pretty-print DIExpression metadata nodes.
What this patch doesn't do:
This patch does not touch the "Indirect" field in DIVariable; but moving
that into the expression would be a natural next step.
http://reviews.llvm.org/D4919
rdar://problem/17994491
Thanks to dblaikie and dexonsmith for reviewing this patch!
Note: I accidentally committed a bogus older version of this patch previously.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@218787 91177308-0d34-0410-b5e6-96231b3b80d8
argument of the llvm.dbg.declare/llvm.dbg.value intrinsics.
Previously, DIVariable was a variable-length field that has an optional
reference to a Metadata array consisting of a variable number of
complex address expressions. In the case of OpPiece expressions this is
wasting a lot of storage in IR, because when an aggregate type is, e.g.,
SROA'd into all of its n individual members, the IR will contain n copies
of the DIVariable, all alike, only differing in the complex address
reference at the end.
By making the complex address into an extra argument of the
dbg.value/dbg.declare intrinsics, all of the pieces can reference the
same variable and the complex address expressions can be uniqued across
the CU, too.
Down the road, this will allow us to move other flags, such as
"indirection" out of the DIVariable, too.
The new intrinsics look like this:
declare void @llvm.dbg.declare(metadata %storage, metadata %var, metadata %expr)
declare void @llvm.dbg.value(metadata %storage, i64 %offset, metadata %var, metadata %expr)
This patch adds a new LLVM-local tag to DIExpressions, so we can detect
and pretty-print DIExpression metadata nodes.
What this patch doesn't do:
This patch does not touch the "Indirect" field in DIVariable; but moving
that into the expression would be a natural next step.
http://reviews.llvm.org/D4919
rdar://problem/17994491
Thanks to dblaikie and dexonsmith for reviewing this patch!
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@218778 91177308-0d34-0410-b5e6-96231b3b80d8