0->field, which is illegal. Now we print ((foo*)0)->field.
The second hunk is an optimization to not print undefined phi values.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@17094 91177308-0d34-0410-b5e6-96231b3b80d8
double %test(uint %X) {
%tmp.1 = cast uint %X to double ; <double> [#uses=1]
ret double %tmp.1
}
into:
test:
sub %ESP, 8
mov %EAX, DWORD PTR [%ESP + 12]
mov %ECX, 0
mov DWORD PTR [%ESP], %EAX
mov DWORD PTR [%ESP + 4], %ECX
fild QWORD PTR [%ESP]
add %ESP, 8
ret
... which basically zero extends to 8 bytes, then does an fild for an
8-byte signed int.
Now we generate this:
test:
sub %ESP, 4
mov %EAX, DWORD PTR [%ESP + 8]
mov DWORD PTR [%ESP], %EAX
fild DWORD PTR [%ESP]
shr %EAX, 31
fadd DWORD PTR [.CPItest_0 + 4*%EAX]
add %ESP, 4
ret
.section .rodata
.align 4
.CPItest_0:
.quad 5728578726015270912
This does a 32-bit signed integer load, then adds in an offset if the sign
bit of the integer was set.
It turns out that this is substantially faster than the preceeding sequence.
Consider this testcase:
unsigned a[2]={1,2};
volatile double G;
void main() {
int i;
for (i=0; i<100000000; ++i )
G += a[i&1];
}
On zion (a P4 Xeon, 3Ghz), this patch speeds up the testcase from 2.140s
to 0.94s.
On apoc, an athlon MP 2100+, this patch speeds up the testcase from 1.72s
to 1.34s.
Note that the program takes 2.5s/1.97s on zion/apoc with GCC 3.3 -O3
-fomit-frame-pointer.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@17083 91177308-0d34-0410-b5e6-96231b3b80d8
%X = and Y, constantint
%Z = setcc %X, 0
instead of emitting:
and %EAX, 3
test %EAX, %EAX
je .LBBfoo2_2 # UnifiedReturnBlock
We now emit:
test %EAX, 3
je .LBBfoo2_2 # UnifiedReturnBlock
This triggers 581 times on 176.gcc for example.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@17080 91177308-0d34-0410-b5e6-96231b3b80d8
1. optional shift left
2. and x, immX
3. and y, immY
4. or z, x, y
==> rlwimi z, x, y, shift, mask begin, mask end
where immX == ~immY and immX is a run of set bits. This transformation
fires 32 times on voronoi, once on espresso, and probably several
dozen times on external benchmarks such as gcc.
To put this in terms of actual code generated for
struct B { unsigned a : 3; unsigned b : 2; };
void storeA (struct B *b, int v) { b->a = v;}
void storeB (struct B *b, int v) { b->b = v;}
Old:
_storeA:
rlwinm r2, r4, 0, 29, 31
lwz r4, 0(r3)
rlwinm r4, r4, 0, 0, 28
or r2, r4, r2
stw r2, 0(r3)
blr
_storeB:
rlwinm r2, r4, 3, 0, 28
rlwinm r2, r2, 0, 27, 28
lwz r4, 0(r3)
rlwinm r4, r4, 0, 29, 26
or r2, r2, r4
stw r2, 0(r3)
blr
New:
_storeA:
lwz r2, 0(r3)
rlwimi r2, r4, 0, 29, 31
stw r2, 0(r3)
blr
_storeB:
lwz r2, 0(r3)
rlwimi r2, r4, 3, 27, 28
stw r2, 0(r3)
blr
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@17078 91177308-0d34-0410-b5e6-96231b3b80d8
flag rotate left word immediate then mask insert (rlwimi) as a two-address
instruction, and update the ISel usage of the instruction accordingly.
This will allow us to properly schedule rlwimi, and use it to efficiently
codegen bitfield operations.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@17068 91177308-0d34-0410-b5e6-96231b3b80d8
that the vtables for these classes are only instantiated in this translation
unit, not in every xlation unit they are used.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@17026 91177308-0d34-0410-b5e6-96231b3b80d8
case:
int C[100];
int foo() {
return C[4];
}
We now codegen:
foo:
mov %EAX, DWORD PTR [C + 16]
ret
instead of:
foo:
mov %EAX, OFFSET C
mov %EAX, DWORD PTR [%EAX + 16]
ret
Other impressive features may be coming later.
This patch is contributed by Jeff Cohen!
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@17011 91177308-0d34-0410-b5e6-96231b3b80d8