This is a lot easier than trying to get kill flags right during live range
splitting and rematerialization.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@125113 91177308-0d34-0410-b5e6-96231b3b80d8
anything but the simplest of cases, lower a 256-bit BUILD_VECTOR by
splitting it into 128-bit parts and recombining.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@125105 91177308-0d34-0410-b5e6-96231b3b80d8
If a live range is used by a terminator instruction, and that live range needs
to leave the block on the stack or in a different register, it can be necessary
to have both sides of the split live at the terminator instruction.
Example:
%vreg2 = COPY %vreg1
JMP %vreg1
Becomes after spilling %vreg2:
SPILL %vreg1
JMP %vreg1
The spill doesn't kill the register as is normally the case.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@125102 91177308-0d34-0410-b5e6-96231b3b80d8
I've been using this mode to narrow down llc unit tests. Example
custom compile script:
llc "$@"
not pygrep.py 'mul\s+r([0-9]), r\1,' < bugpoint-test-program.s
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@125096 91177308-0d34-0410-b5e6-96231b3b80d8
Avoid using the same register for two def operands or and earlyclobber
def and use operand. This fixes PR8986 and improves on the prior fix
for rdar://problem/8959122.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@125089 91177308-0d34-0410-b5e6-96231b3b80d8
t2LDRpci with t2LDRi12.
There are a couple of problems with this.
1. The encoding for the literal and immediate constant are different.
Note bit 7 of the literal case is 'U' so it can be negative.
2. t2LDRi12 is now narrowed to tLDRpci before constant island pass is run.
So we end up never using the Thumb2 instruction, which ends up creating a
lot more constant islands.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@125074 91177308-0d34-0410-b5e6-96231b3b80d8
the active loop. This is generally desirable, and it avoids trouble
in situations such as the testcase in PR9123, though the failure
mode depends on use-list order, so it is infeasible to test.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@125065 91177308-0d34-0410-b5e6-96231b3b80d8
After uses of a live range are removed, recompute the live range to only cover
the remaining uses. This is necessary after rematerializing the value before
some (but not all) uses.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@125058 91177308-0d34-0410-b5e6-96231b3b80d8
parsing of operands introduced in r125030. As a small note, besides using a more
generic approach we can also have more descriptive output when debugging
llvm-mc, example:
mcr p7, #1, r5, c1, c1, #4
note: parsed instruction:
['mcr', <ARMCC::al>,
<coprocessor number: 7>,
1,
<register 73>,
<coprocessor register: 1>,
<coprocessor register: 1>,
4]
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@125052 91177308-0d34-0410-b5e6-96231b3b80d8
Motivation: Improve the parsing of not usual (different from registers or
immediates) operand forms.
This commit implements only the generic support. The ARM specific modifications
will come next.
A table like the one below is autogenerated for every instruction
containing a 'ParserMethod' in its AsmOperandClass
static const OperandMatchEntry OperandMatchTable[20] = {
/* Mnemonic, Operand List Mask, Operand Class, Features */
{ "cdp", 29 /* 0, 2, 3, 4 */, MCK_Coproc, Feature_IsThumb|Feature_HasV6 },
{ "cdp", 58 /* 1, 3, 4, 5 */, MCK_Coproc, Feature_IsARM },
A matcher function very similar (but lot more naive) to
MatchInstructionImpl scans the table. After the mnemonic match, the
features are checked and if the "to be parsed" operand index is
present in the mask, there's a real match. Then, a switch like the one
below dispatch the parsing to the custom method provided in
'ParseMethod':
case MCK_Coproc:
return TryParseCoprocessorOperandName(Operands);
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@125030 91177308-0d34-0410-b5e6-96231b3b80d8
The vld1-lane, vld1-dup and vst1-lane instructions do not yet support using
post-increment versions, but all the rest of the NEON load/store instructions
should be handled now.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@125014 91177308-0d34-0410-b5e6-96231b3b80d8
These operations are expanded to pairs of loads or stores, and the first one
uses the address register update to produce the address for the second one.
So far, the second load/store has also updated the address register, just
for convenience, since that output has never been used. In anticipation of
actually supporting post-increment updates for these operations, this changes
the non-updating operations to use a non-updating load/store for the second
instruction.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@125013 91177308-0d34-0410-b5e6-96231b3b80d8
failures with relocations.
The code committed is a first cut at compatibility for emitted relocations in
ELF .o.
Why do this? because existing ARM tools like emitting relocs symbols as
explicit relocations, not as section-offset relocs.
Result is that with these changes,
1) relocs are now substantially identical what to gcc outputs.
2) larger apps (including many spec2k tests) compile, cross-link, and pass
Added reminder fixme to tests for future conversion to .s form.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@124996 91177308-0d34-0410-b5e6-96231b3b80d8
Unified EmitTextAttribute for both Asm and Obj emission (.cpu only)
Added necessary cortex-A8 related attrs for codegen compat tests.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@124995 91177308-0d34-0410-b5e6-96231b3b80d8