This regards how mips16 is viewed. It's not really a target type but
there has always been a target for it in the td files. It's more properly
-mcpu=mips32 -mattr=+mips16 . This is how clang treats it but we have
always had the -mcpu=mips16 which I probably should delete now but it will
require updating all the .ll test cases for mips16. In this case it changed
how we decide if we have a count bits instruction and whether instruction
lowering should then expand ctlz. Now that we have dual mode compilation,
-mattr=+mips16 really just indicates the inital processor mode that
we are compiling for. (It is also possible to have -mcpu=64 -mattr=+mips16
but as far as I know, nobody has even built such a processor, though there
is an architecture manual for this).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@188586 91177308-0d34-0410-b5e6-96231b3b80d8
Clang doesn't support the MSVC __cpuid intrinsic yet, and fixing that is
blocked on some fairly complicated issues.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@188584 91177308-0d34-0410-b5e6-96231b3b80d8
safe on PPC32 SVR4 ABI
[Patch and following text by Mark Minich; committing on his behalf.]
There are FIXME's in PowerPC/PPCFrameLowering.cpp, method
PPCFrameLowering::emitPrologue() related to "negative offsets of R1"
on PPC32 SVR4. They're true, but the real issue is that on PPC32 SVR4
(and any ABI without a Red Zone), no spills may be made until after
the stackframe is claimed, which also includes the LR spill which is
at a positive offset. The same problem exists in emitEpilogue(),
though there's no FIXME for it. I intend to fix this issue, making
LLVM-compiled code finally safe for use on SVR4/EABI/e500 32-bit
platforms (including in particular, OS-free embedded systems & kernel
code, where interrupts may share the same stack as user code).
In preparation for making these changes, to make the diffs for the
functional changes less cluttered, I am providing the non-functional
refactorings in two stages:
Stage 1 does some minor fluffy refactorings to pull multiple method
calls up into a single bool, creating named bools for repeated uses of
obscure logic, moving some code up earlier because either stage 2 or
my final version will require it earlier, and rewording/adding some
comments. My stage 1 changes can be characterized as primarily fluffy
cleanup, the purpose of which may be unclear until the stage 2 or
final changes are made.
My stage 2 refactorings combine the separate PPC32 & PPC64 logic,
which is currently performed by largely duplicate code, into a single
flow, with the differences handled by a group of constants initialized
early in the methods.
This submission is for my stage 1 changes. There should be no
functional changes whatsoever; this is a pure refactoring.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@188573 91177308-0d34-0410-b5e6-96231b3b80d8
If an ELF relocation is pointed at an absolute address, it will have a symbol ID of zero.
RuntimeDyldELF::processRelocationRef was not previously handling this case, and was instead trying to handle it as a section-relative fixup.
I think this is the right fix here, but my elf-fu is poor on some of the more exotic platforms, so I'd appreciate it if anyone with greater knowledge could verify this.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@188572 91177308-0d34-0410-b5e6-96231b3b80d8
The logic in SIInsertWaits::getHwCounts() only really made sense for SMRD
instructions, and trying to shoehorn it into handling DS_WRITE_B32 caused
it to corrupt the encoding of that by clobbering the first operand with
the second one.
Undo that damage and only apply the SMRD logic to that.
Fixes some derivates related piglit regressions with radeonsi.
Reviewed-by: Tom Stellard <thomas.stellard@amd.com>
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@188558 91177308-0d34-0410-b5e6-96231b3b80d8
This unbreaks PIC with fast isel on ELF targets (PR16717). The output matches
what GCC and SDag do for PIC but may not cover all of the many flavors of PIC
that exist.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@188551 91177308-0d34-0410-b5e6-96231b3b80d8
Thumb2 literal loads use an offset encoding which allows for
negative zero. This fixes parsing and encoding so that #-0
is correctly processed. The parser represents #-0 as INT32_MIN.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@188549 91177308-0d34-0410-b5e6-96231b3b80d8
There are many Thumb instructions which take 12-bit immediates encoded in a special
8-byte value + 4-byte rotator form. Not all numbers are represented, and it's legal
to transform an assembly instruction to be able to encode the immediate.
For example: AND and BIC are complementary instructions; one can switch the AND
to a BIC as long as the immediate is complemented.
The intent is to switch one instruction into its complementary one when the immediate
cannot be encoded in the form requested in the original assembly and when the
complementary immediate is encodable.
The patch addresses two issues:
1. definition of t2SOImmNot immediate - it has to check that the orignal value is
not encoded naturally
2. t2AND and t2BIC instruction aliases which should use the Thumb2 SOImm operand
rather than the ARM one.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@188548 91177308-0d34-0410-b5e6-96231b3b80d8
Generalize r188163 to cope with return types other than MVT::i32, just
as the existing visitMemCmpCall code did. I've split this out into a
subroutine so that it can be used for other upcoming patches.
I also noticed that I'd used the wrong API to record the out chain.
It's a load that uses DAG.getRoot() rather than getRoot(), so the out
chain should go on PendingLoads. I don't have a testcase for that because
we don't do any interesting scheduling on z yet.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@188540 91177308-0d34-0410-b5e6-96231b3b80d8
r188163 used CLC to implement memcmp. Code that compares the result
directly against zero can test the CC value produced by CLC, but code
that needs an integer result must use IPM. The sequence I'd used was:
ipm <reg>
sll <reg>, 2
sra <reg>, 30
but I'd forgotten that this inverts the order, so that CC==1 ("less")
becomes an integer greater than zero, and CC==2 ("greater") becomes
an integer less than zero. This sequence should only be used if the
CLC arguments are reversed to compensate. The problem then is that
the branch condition must also be reversed when testing the CLC
result directly.
Rather than do that, I went for a different sequence that works with
the natural CLC order:
ipm <reg>
srl <reg>, 28
rll <reg>, <reg>, 31
One advantage of this is that it doesn't clobber CC. A disadvantage
is that any sign extension to 64 bits must be done separately,
rather than being folded into the shifts.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@188538 91177308-0d34-0410-b5e6-96231b3b80d8
The SIInsertWaits pass was overwriting the first operand (gds bit) of
DS_WRITE_B32 with the second operand (value to write). This meant that
any time the value to write was stored in an odd number VGPR, the gds
bit would be set causing the instruction to write to GDS instead of LDS.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@188522 91177308-0d34-0410-b5e6-96231b3b80d8
When both constants are positive or both constants are negative,
InstCombine already simplifies comparisons like this, but when
it's exactly zero and -1, the operand sorting ends up reversed
and the pattern fails to match. Handle that special case.
Follow up for rdar://14689217
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@188512 91177308-0d34-0410-b5e6-96231b3b80d8
This path wasn't tested before without a datalayout,
so add some more tests and re-run with and without one.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@188507 91177308-0d34-0410-b5e6-96231b3b80d8
same way as X86_64_GOT relocations. The 'Load' part of GOTLoad is just an
optimization hint for the linker anyway, and can be safely ignored.
This patch also fixes some minor issues with the relocations introduced while
processing an X86_64_GOT[Load]: the addend for the GOT entry should always be
zero, and the addend for the replacement relocation at the original offset
should be the same as the addend of the relocation being replaced.
I haven't come up with a good way of testing this yet, but I'm working on it.
This fixes <rdar://problem/14651564>.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@188499 91177308-0d34-0410-b5e6-96231b3b80d8
Before this patch this flag is IOS specific, but is also
useful for bare project like bootloaders / kernels etc,
since movw / movt prevents simple relocation. Therefore
make this flag more commonly available.
note: this patch depends on a similiar rename in clang
Patch by Jeroen Hofstee.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@188487 91177308-0d34-0410-b5e6-96231b3b80d8
r9 is defined as a platform-specific register in the ARM EABI.
It can be reserved for a special purpose or be used as a general
purpose register. Add support for reserving r9 for all ARM, while
leaving the IOS usage unchanged.
Patch by Jeroen Hofstee.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@188485 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
When the -dfsan-debug-nonzero-labels parameter is supplied, the code
is instrumented such that when a call parameter, return value or load
produces a nonzero label, the function __dfsan_nonzero_label is called.
The idea is that a debugger breakpoint can be set on this function
in a nominally label-free program to help identify any bugs in the
instrumentation pass causing labels to be introduced.
Reviewers: eugenis
CC: llvm-commits
Differential Revision: http://llvm-reviews.chandlerc.com/D1405
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@188472 91177308-0d34-0410-b5e6-96231b3b80d8
1. The offset range for Thumb1 PC relative loads is [0..1020] and not [-1024..1020]
2. Thumb2 PC relative loads may define the PC, so the restriction placed on target register is removed
3. Removes unneeded alias between "ldr.n" and t1LDRpci. ".n" is actually stripped by both tablegen
and the ASM parser, so this alias rule really does nothing
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@188466 91177308-0d34-0410-b5e6-96231b3b80d8