This code hadn't been updated after the "structs with more than 256 elements"
related changes to the GEP instruction. Also it was not handling the
ConstantAggregateZero class.
Now it does!
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@13834 91177308-0d34-0410-b5e6-96231b3b80d8
into (X & (C2 << C1)) != (C3 << C1), where the shift may be either left or
right and the compare may be any one.
This triggers 1546 times in 176.gcc alone, as it is a common pattern that
occurs for bitfield accesses.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@13740 91177308-0d34-0410-b5e6-96231b3b80d8
in the size calculation.
This is not something you want to see:
Loop Unroll: F[main] Loop %no_exit Loop Size = 2 Trip Count = 2147483648 - UNROLLING!
The problem was that 2*2147483648 == 0.
Now we get:
Loop Unroll: F[main] Loop %no_exit Loop Size = 2 Trip Count = 2147483648 - TOO LARGE: 4294967296>100
Thanks to some anonymous person playing with the demo page that repeatedly
caused zion to go into swapping land. That's one way to ensure you'll get
a quick bugfix. :)
Testcase here: Transforms/LoopUnroll/2004-05-13-DontUnrollTooMuch.ll
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@13564 91177308-0d34-0410-b5e6-96231b3b80d8
%tmp.0 = getelementptr [50 x sbyte]* %ar, uint 0, int 5 ; <sbyte*> [#uses=2]
%tmp.7 = getelementptr sbyte* %tmp.0, int 8 ; <sbyte*> [#uses=1]
together. This patch actually allows us to simplify and generalize the code.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@13415 91177308-0d34-0410-b5e6-96231b3b80d8
is only used by a cast, and the casted type is the same size as the original
allocation, it would eliminate the cast by folding it into the allocation.
Unfortunately, it was placing the new allocation instruction right before
the cast, which could pull (for example) alloca instructions into the body
of a function. This turns statically allocatable allocas into expensive
dynamically allocated allocas, which is bad bad bad.
This fixes the problem by placing the new allocation instruction at the same
place the old one was, duh. :)
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@13289 91177308-0d34-0410-b5e6-96231b3b80d8
loop. This eliminates the extra add from the previous case, but it's
not clear that this will be a performance win overall. Tommorows test
results will tell. :)
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@13103 91177308-0d34-0410-b5e6-96231b3b80d8
over its USES. If it's dead it doesn't have any uses! :)
Thanks to the fabulous and mysterious Bill Wendling for pointing this out. :)
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@13102 91177308-0d34-0410-b5e6-96231b3b80d8
structure to being dynamically computed on demand. This makes updating
loop information MUCH easier.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@13045 91177308-0d34-0410-b5e6-96231b3b80d8
that the exit block of the loop becomes the new entry block of the function.
This was causing a verifier assertion on 252.eon.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@13039 91177308-0d34-0410-b5e6-96231b3b80d8
block. The primary motivation for doing this is that we can now unroll nested loops.
This makes a pretty big difference in some cases. For example, in 183.equake,
we are now beating the native compiler with the CBE, and we are a lot closer
with LLC.
I'm now going to play around a bit with the unroll factor and see what effect
it really has.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@13034 91177308-0d34-0410-b5e6-96231b3b80d8
limited. Even in it's extremely simple state (it can only *fully* unroll single
basic block loops that execute a constant number of times), it already helps improve
performance a LOT on some benchmarks, particularly with the native code generators.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@13028 91177308-0d34-0410-b5e6-96231b3b80d8
Instead of producing code like this:
Loop:
X = phi 0, X2
...
X2 = X + 1
if (X != N-1) goto Loop
We now generate code that looks like this:
Loop:
X = phi 0, X2
...
X2 = X + 1
if (X2 != N) goto Loop
This has two big advantages:
1. The trip count of the loop is now explicit in the code, allowing
the direct implementation of Loop::getTripCount()
2. This reduces register pressure in the loop, and allows X and X2 to be
put into the same register.
As a consequence of the second point, the code we generate for loops went
from:
.LBB2: # no_exit.1
...
mov %EDI, %ESI
inc %EDI
cmp %ESI, 2
mov %ESI, %EDI
jne .LBB2 # PC rel: no_exit.1
To:
.LBB2: # no_exit.1
...
inc %ESI
cmp %ESI, 3
jne .LBB2 # PC rel: no_exit.1
... which has two fewer moves, and uses one less register.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@12961 91177308-0d34-0410-b5e6-96231b3b80d8
This transforms code like this:
%C = or %A, %B
%D = select %cond, %C, %A
into:
%C = select %cond, %B, 0
%D = or %A, %C
Since B is often a constant, the select can often be eliminated. In any case,
this reduces the usage count of A, allowing subsequent optimizations to happen.
This xform applies when the operator is any of:
add, sub, mul, or, xor, and, shl, shr
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@12800 91177308-0d34-0410-b5e6-96231b3b80d8
that have a constant operand. This implements
add.ll:test19, shift.ll:test15*, and others that are not tested
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@12794 91177308-0d34-0410-b5e6-96231b3b80d8
This also implements some new features for the indvars pass, including
linear function test replacement, exit value substitution, and it works with
a much more general class of induction variables and loops.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@12620 91177308-0d34-0410-b5e6-96231b3b80d8
#1 is to unconditionally strip constantpointerrefs out of
instruction operands where they are absolutely pointless and inhibit
optimization. GRRR!
#2 is to implement InstCombine/getelementptr_const.ll
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@12519 91177308-0d34-0410-b5e6-96231b3b80d8
as it is making effectively arbitrary modifications to the CFG and we don't
have a domset/domfrontier implementations that can handle the dynamic updates.
Instead of having a bunch of code that doesn't actually work in practice,
just demote any potentially tricky values to the stack (causing the problem
to go away entirely). Later invocations of mem2reg will rebuild SSA for us.
This fixes all of the major performance regressions with tail duplication
from LLVM 1.1. For example, this loop:
---
int popcount(int x) {
int result = 0;
while (x != 0) {
result = result + (x & 0x1);
x = x >> 1;
}
return result;
}
---
Used to be compiled into:
int %popcount(int %X) {
entry:
br label %loopentry
loopentry: ; preds = %entry, %no_exit
%x.0 = phi int [ %X, %entry ], [ %tmp.9, %no_exit ] ; <int> [#uses=3]
%result.1.0 = phi int [ 0, %entry ], [ %tmp.6, %no_exit ] ; <int> [#uses=2]
%tmp.1 = seteq int %x.0, 0 ; <bool> [#uses=1]
br bool %tmp.1, label %loopexit, label %no_exit
no_exit: ; preds = %loopentry
%tmp.4 = and int %x.0, 1 ; <int> [#uses=1]
%tmp.6 = add int %tmp.4, %result.1.0 ; <int> [#uses=1]
%tmp.9 = shr int %x.0, ubyte 1 ; <int> [#uses=1]
br label %loopentry
loopexit: ; preds = %loopentry
ret int %result.1.0
}
And is now compiled into:
int %popcount(int %X) {
entry:
br label %no_exit
no_exit: ; preds = %entry, %no_exit
%x.0.0 = phi int [ %X, %entry ], [ %tmp.9, %no_exit ] ; <int> [#uses=2]
%result.1.0.0 = phi int [ 0, %entry ], [ %tmp.6, %no_exit ] ; <int> [#uses=1]
%tmp.4 = and int %x.0.0, 1 ; <int> [#uses=1]
%tmp.6 = add int %tmp.4, %result.1.0.0 ; <int> [#uses=2]
%tmp.9 = shr int %x.0.0, ubyte 1 ; <int> [#uses=2]
%tmp.1 = seteq int %tmp.9, 0 ; <bool> [#uses=1]
br bool %tmp.1, label %loopexit, label %no_exit
loopexit: ; preds = %no_exit
ret int %tmp.6
}
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@12457 91177308-0d34-0410-b5e6-96231b3b80d8
time from 615s to 1.49s on a large testcase that has a gigantic switch statement
that all of the blocks in the function go to (an intepreter).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@12442 91177308-0d34-0410-b5e6-96231b3b80d8
Fix InstCombine/2004-03-13-InstCombineInfLoop.ll which caused an infinite
loop compiling (I think) povray.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@12365 91177308-0d34-0410-b5e6-96231b3b80d8
Note that this is a band-aid put over a band-aid. This just undisables
tail duplication in on very specific case that it seems to work in.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@11989 91177308-0d34-0410-b5e6-96231b3b80d8
This is a really minor thing, but might help out the 'switch statement induction'
code in simplifycfg.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@11900 91177308-0d34-0410-b5e6-96231b3b80d8