just connects an SCC to one of its descendants directly. Not much of an
impact. The last one is the hard one -- connecting an SCC to one of its
ancestors, and thereby forming a cycle such that we have to merge all
the SCCs participating in the cycle.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@207751 91177308-0d34-0410-b5e6-96231b3b80d8
of SCCs in the SCC DAG. Exercise them in the big graph test case. These
will be especially useful for establishing invariants in insertion
logic.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@207749 91177308-0d34-0410-b5e6-96231b3b80d8
We already do this for shstrtab, so might as well do it for strtab. This
extracts the string table building code into a separate class. The idea
is to use it for other object formats too.
I mostly wanted to do this for the general principle, but it does save a
little bit on object file size. I tried this on a clang bootstrap and
saved 0.54% on the sum of object file sizes (1.14 MB out of 212 MB for
a release build).
Differential Revision: http://reviews.llvm.org/D3533
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@207670 91177308-0d34-0410-b5e6-96231b3b80d8
When we were moving from a larger vector to a smaller one but didn't
need to re-allocate, we would move-assign over uninitialized memory in
the target, then move-construct that same data again.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@207663 91177308-0d34-0410-b5e6-96231b3b80d8
edge entirely within an existing SCC. Shockingly, making the connected
component more connected is ... a total snooze fest. =]
Anyways, its wired up, and I even added a test case to make sure it
pretty much sorta works. =D
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@207631 91177308-0d34-0410-b5e6-96231b3b80d8
bits), and discover that it's totally broken. Yay tests. Boo bug. Fix
the basic edge removal so that it works by nulling out the removed edges
rather than actually removing them. This leaves the indices valid in the
map from callee to index, and preserves some of the locality for
iterating over edges. The iterator is made bidirectional to reflect that
it now has to skip over null entries, and the skipping logic is layered
onto it.
As future work, I would like to track essentially the "load factor" of
the edge list, and when it falls below a threshold do a compaction.
An alternative I considered (and continue to consider) is storing the
callees in a doubly linked list where each element of the list is in
a set (which is essentially the classical linked-hash-table
datastructure). The problem with that approach is that either you need
to heap allocate the linked list nodes and use pointers to them, or use
a bucket hash table (with even *more* linked list pointer overhead!),
etc. It's pretty easy to get 5x overhead for values that are just
pointers. So far, I think punching holes in the vector, and periodic
compaction is likely to be much more efficient overall in the space/time
tradeoff.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@207619 91177308-0d34-0410-b5e6-96231b3b80d8
Move a detailed test of `BranchProbability::scale()` from
`BlockFrequencyTest` over to `BranchProbabilityTest`.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@207552 91177308-0d34-0410-b5e6-96231b3b80d8
Change `BlockFrequency` to defer to `BranchProbability::scale()` and
`BranchProbability::scaleByInverse()`.
This removes `BlockFrequency::scale()` from its API (and drops the
ability to see the remainder), but the only user was the unit tests. If
some code in the future needs an API that exposes the remainder, we can
add something to `BranchProbability`, but I find that unlikely.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@207550 91177308-0d34-0410-b5e6-96231b3b80d8
Add API to `BranchProbability` for scaling big integers. Next job is to
rip the logic out of `BlockMass` and `BlockFrequency`.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@207544 91177308-0d34-0410-b5e6-96231b3b80d8
never actually compared for equality two pointer unions that were equal.
Fortunately, things seem to work. =]
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@207468 91177308-0d34-0410-b5e6-96231b3b80d8
This commit provides the necessary C/C++ APIs and infastructure to enable fine-
grain progress report and safe suspension points after each pass in the pass
manager.
Clients can provide a callback function to the pass manager to call after each
pass. This can be used in a variety of ways (progress report, dumping of IR
between passes, safe suspension of threads, etc).
The run listener list is maintained in the LLVMContext, which allows a multi-
threaded client to be only informed for it's own thread. This of course assumes
that the client created a LLVMContext for each thread.
This fixes <rdar://problem/16728690>
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@207430 91177308-0d34-0410-b5e6-96231b3b80d8
contract (and be much more useful). It now provides exactly the
post-order traversal a caller might need to perform on newly formed
SCCs.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@207410 91177308-0d34-0410-b5e6-96231b3b80d8
API requirements much more obvious.
The key here is that there are two totally different use cases for
mutating the graph. Prior to doing any SCC formation, it is very easy to
mutate the graph. There may be users that want to do small tweaks here,
and then use the already-built graph for their SCC-based operations.
This method remains on the graph itself and is documented carefully as
being cheap but unavailable once SCCs are formed.
Once SCCs are formed, and there is some in-flight DFS building them, we
have to be much more careful in how we mutate the graph. These mutation
operations are sunk onto the SCCs themselves, which both simplifies
things (the code was already there!) and helps make it obvious that
these interfaces are only applicable within that context. The other
primary constraint is that the edge being mutated is actually related to
the SCC on which we call the method. This helps make it obvious that you
cannot arbitrarily mutate some other SCC.
I've tried to write much more complete documentation for the interesting
mutation API -- intra-SCC edge removal. Currently one aspect of this
documentation is a lie (the result list of SCCs) but we also don't even
have tests for that API. =[ I'm going to add tests and fix it to match
the documentation next.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@207339 91177308-0d34-0410-b5e6-96231b3b80d8
This should reduce the chance of memory leaks like those fixed in
r207240.
There's still some unclear ownership of DIEs happening in DwarfDebug.
Pushing unique_ptr and references through more APIs should help expose
the cases where ownership is a bit fuzzy.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@207263 91177308-0d34-0410-b5e6-96231b3b80d8
Makes some more cases (the unit tests, specifically), lexically
compatible with a change to unique_ptr.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@207261 91177308-0d34-0410-b5e6-96231b3b80d8
It's fishy to be changing the `std::vector<>` owned by the iterator, and
no one actual does it, so I'm going to remove the ability in a
subsequent commit. First, update the users.
<rdar://problem/14292693>
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@207252 91177308-0d34-0410-b5e6-96231b3b80d8
an issue. This way you see that the number of nodes was wrong before
a crash due to accessing too many nodes.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@207094 91177308-0d34-0410-b5e6-96231b3b80d8
Boost's iterator_adaptor, and a specific adaptor which iterates over
pointees when wrapped around an iterator over pointers.
This is the result of a long discussion on IRC with Duncan Smith, Dave
Blaikie, Richard Smith, and myself. Essentially, I could use some subset
of the iterator facade facilities often used from Boost, and everyone
seemed interested in having the functionality in a reasonably generic
form. I've tried to strike a balance between the pragmatism and the
established Boost design. The primary differences are:
1) Delegating to the standard iterator interface names rather than
special names that then make up a second iterator-like API.
2) Using the name 'pointee_iterator' which seems more clear than
'indirect_iterator'. The whole business of calling the '*p' operation
'pointer indirection' in the standard is ... quite confusing. And
'dereference' is no better of a term for moving from a pointer to
a reference.
Hoping Duncan, and others continue to provide comments on this until
we've got a nice, minimal abstraction.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@207069 91177308-0d34-0410-b5e6-96231b3b80d8
than functions. So far, this access pattern is *much* more common. It
seems likely that any user of this interface is going to have nodes at
the point that they are querying the SCCs.
No functionality changed.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@207045 91177308-0d34-0410-b5e6-96231b3b80d8
This implements the core functionality necessary to remove an edge from
the call graph and correctly update both the basic graph and the SCC
structure. As part of that it has to run a tiny (in number of nodes)
Tarjan-style DFS walk of an SCC being mutated to compute newly formed
SCCs, etc.
This is *very rough* and a WIP. I have a bunch of FIXMEs for code
cleanup that will reduce the boilerplate in this change substantially.
I also have a bunch of simplifications to various parts of both
algorithms that I want to make, but first I'd like to have a more
holistic picture. Ideally, I'd also like more testing. I'll probably add
quite a few more unit tests as I go here to cover the various different
aspects and corner cases of removing edges from the graph.
Still, this is, so far, successfully updating the SCC graph in-place
without disrupting the identity established for the existing SCCs even
when we do challenging things like delete the critical edge that made an
SCC cycle at all and have to reform things as a tree of smaller SCCs.
Getting this to work is really critical for the new pass manager as it
is going to associate significant state with the SCC instance and needs
it to be stable. That is also the motivation behind the return of the
newly formed SCCs. Eventually, I'll wire this all the way up to the
public API so that the pass manager can use it to correctly re-enqueue
newly formed SCCs into a fresh postorder traversal.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@206968 91177308-0d34-0410-b5e6-96231b3b80d8
up the stack finishing the exploration of each entries children before
we're finished in addition to accounting for their low-links. Added
a unittest that really hammers home the need for this with interlocking
cycles that would each appear distinct otherwise and crash or compute
the wrong result. As part of this, nuke a stale fixme and bring the rest
of the implementation still more closely in line with the original
algorithm.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@206966 91177308-0d34-0410-b5e6-96231b3b80d8
resisted this for too long. Just with the basic testing here I was able
to exercise the analysis in more detail and sift out both type signature
bugs in the API and a bug in the DFS numbering. All of these are fixed
here as well.
The unittests will be much more important for the mutation support where
it is necessary to craft minimal mutations and then inspect the state of
the graph. There is just no way to do that with a standard FileCheck
test. However, unittesting these kinds of analyses is really quite easy,
especially as they're designed with the new pass manager where there is
essentially no infrastructure required to rig up the core logic and
exercise it at an API level.
As a minor aside about the DFS numbering bug, the DFS numbering used in
LCG is a bit unusual. Rather than numbering from 0, we number from 1,
and use 0 as the sentinel "unvisited" state. Other implementations often
use '-1' for this, but I find it easier to deal with 0 and it shouldn't
make any real difference provided someone doesn't write silly bugs like
forgetting to actually initialize the DFS numbering. Oops. ;]
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@206954 91177308-0d34-0410-b5e6-96231b3b80d8
this code ages ago and lost track of it. Seems worth doing though --
this thing can get called from places that would benefit from knowing
that std::distance is O(1). Also add a very fledgeling unittest for
Users and make sure various aspects of this seem to work reasonably.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@206453 91177308-0d34-0410-b5e6-96231b3b80d8
Implement DebugInfoVerifier, which steals verification relying on
DebugInfoFinder from Verifier.
- Adds LegacyDebugInfoVerifierPassPass, a ModulePass which wraps
DebugInfoVerifier. Uses -verify-di command-line flag.
- Change verifyModule() to invoke DebugInfoVerifier as well as
Verifier.
- Add a call to createDebugInfoVerifierPass() wherever there was a
call to createVerifierPass().
This implementation as a module pass should sidestep efficiency issues,
allowing us to turn debug info verification back on.
<rdar://problem/15500563>
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@206300 91177308-0d34-0410-b5e6-96231b3b80d8
by removing the MallocSlabAllocator entirely and just using
MallocAllocator directly. This makes all off these allocators expose and
utilize the same core interface.
The only ugly part of this is that it exposes the fact that the JIT
allocator has no real handling of alignment, any more than the malloc
allocator does. =/ It would be nice to fix both of these to support
alignments, and then to leverage that in the BumpPtrAllocator to do less
over allocation in order to manually align pointers. But, that's another
patch for another day. This patch has no functional impact, it just
removes the somewhat meaningless wrapper around MallocAllocator.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@206267 91177308-0d34-0410-b5e6-96231b3b80d8
abstract interface. The only user of this functionality is the JIT
memory manager and it is quite happy to have a custom type here. This
removes a virtual function call and a lot of unnecessary abstraction
from the common case where this is just a *very* thin vaneer around
a call to malloc.
Hopefully still no functionality changed here. =]
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@206149 91177308-0d34-0410-b5e6-96231b3b80d8
slabs rather than embedding a singly linked list in the slabs
themselves. This has a few advantages:
- Better utilization of the slab's memory by not wasting 16-bytes at the
front.
- Simpler allocation strategy by not having a struct packed at the
front.
- Avoids paging every allocated slab in just to traverse them for
deallocating or dumping stats.
The latter is the really nice part. Folks have complained from time to
time bitterly that tearing down a BumpPtrAllocator, even if it doesn't
run any destructors, pages in all of the memory allocated. Now it won't.
=]
Also resolves a FIXME with the scaling of the slab sizes. The scaling
now disregards specially sized slabs for allocations larger than the
threshold.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@206147 91177308-0d34-0410-b5e6-96231b3b80d8