This is an iterator which you can build around a MemoryBuffer. It will
iterate through the non-empty, non-comment lines of the buffer as
a forward iterator. It should be small and reasonably fast (although it
could be made much faster if anyone cares, I don't really...).
This will be used to more simply support the text-based sample
profile file format, and is largely based on the original patch by
Diego. I've re-worked the style of it and separated it from the work of
producing a MemoryBuffer from a file which both simplifies the interface
and makes it easier to test.
The style of the API follows the C++ standard naming conventions to fit
in better with iterators in general, much like the Path and FileSystem
interfaces follow standard-based naming conventions.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@198068 91177308-0d34-0410-b5e6-96231b3b80d8
According to the docs, ThreadLocal<>::get() should return NULL
if no object has been set. This patch makes that the case also for non-thread
builds and adds a very basic unit test to check it.
(This was causing PR18205 because PrettyStackTraceHead didn't get zero-
initialized and we'd crash trying to read past the end of that list. We didn't
notice this so much on Linux since we'd crash after printing all the entries,
but on Mac we print into a SmallString, and would crash before printing that.)
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@197718 91177308-0d34-0410-b5e6-96231b3b80d8
Stray *Tests might stay after reverting.
FIXME: Could we apply this feature to clang/unittests?
FIXME: Implement this feature to CMake.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@197661 91177308-0d34-0410-b5e6-96231b3b80d8
It is also not clear what the value of the test was. The API is used from
existing tools and can (and is) tested with lit.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@197654 91177308-0d34-0410-b5e6-96231b3b80d8
Somewhat counterintuitively the first arg in gtest is treated as the
expectation.
No change to the tests themselves.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@197124 91177308-0d34-0410-b5e6-96231b3b80d8
The old AddFixedStringToRegEx() it was based on got away with this for the
longest time, but the problem became easy to spot after the cleanup in r197096.
Also add a quick unit test to cover regex escaping.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@197121 91177308-0d34-0410-b5e6-96231b3b80d8
Defaulting to iOS 3.0 when LLVM has to guess the version is no longer a useful
option and can give surprising results (like tail calls being disabled).
5.0 seems like a reasonable compromise as a platform that's still interesting
to some people.
rdar://problem/15567348
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@196912 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
Rewrite asan's stack frame layout.
First, most of the stack layout logic is moved into a separte file
to make it more testable and (potentially) useful for other projects.
Second, make the frames more compact by using adaptive redzones
(smaller for small objects, larger for large objects).
Third, try to minimized gaps due to large alignments (this is hypothetical since
today we don't see many stack vars aligned by more than 32).
The frames indeed become more compact, but I'll still need to run more benchmarks
before committing, but I am sking for review now to get early feedback.
This change will be accompanied by a trivial change in compiler-rt tests
to match the new frame sizes.
Reviewers: samsonov, dvyukov
Reviewed By: samsonov
CC: llvm-commits
Differential Revision: http://llvm-reviews.chandlerc.com/D2324
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@196568 91177308-0d34-0410-b5e6-96231b3b80d8
We were previously not adding fast-math flags through CreateBinOp()
when it happened to be making a floating point binary operator. This
patch updates it to do so similarly to directly calling CreateF*().
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@196438 91177308-0d34-0410-b5e6-96231b3b80d8
When a block is unreachable, asking its dom tree descendants should
return the empty set. However, the computation of the descendants
was causing a segmentation fault because the dom tree node we get
from the basic block is initially NULL.
Fixed by adding a test for a valid dom tree node before we iterate.
The patch also adds some unit tests to the existing dom tree tests.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@196099 91177308-0d34-0410-b5e6-96231b3b80d8
CallGraph.
This makes the CallGraph a totally generic analysis object that is the
container for the graph data structure and the primary interface for
querying and manipulating it. The pass logic is separated into its own
class. For compatibility reasons, the pass provides wrapper methods for
most of the methods on CallGraph -- they all just forward.
This will allow the new pass manager infrastructure to provide its own
analysis pass that constructs the same CallGraph object and makes it
available. The idea is that in the new pass manager, the analysis pass's
'run' method returns a concrete analysis 'result'. Here, that result is
a 'CallGraph'. The 'run' method will typically do only minimal work,
deferring much of the work into the implementation of the result object
in order to be lazy about computing things, but when (like DomTree)
there is *some* up-front computation, the analysis does it prior to
handing the result back to the querying pass.
I know some of this is fairly ugly. I'm happy to change it around if
folks can suggest a cleaner interim state, but there is going to be some
amount of unavoidable ugliness during the transition period. The good
thing is that this is very limited and will naturally go away when the
old pass infrastructure goes away. It won't hang around to bother us
later.
Next up is the initial new-PM-style call graph analysis. =]
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@195722 91177308-0d34-0410-b5e6-96231b3b80d8
proxy. This lets a function pass query a module analysis manager.
However, the interface is const to indicate that only cached results can
be safely queried.
With this, I think the new pass manager is largely functionally complete
for modules and analyses. Still lots to test, and need to generalize to
SCCs and Loops, and need to build an adaptor layer to support the use of
existing Pass objects in the new managers.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@195538 91177308-0d34-0410-b5e6-96231b3b80d8
results.
This is the last piece of infrastructure needed to effectively support
querying *up* the analysis layers. The next step will be to introduce
a proxy which provides access to those layers with appropriate use of
const to direct queries to the safe interface.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@195525 91177308-0d34-0410-b5e6-96231b3b80d8
one function's analyses are invalidated at a time. Also switch the
preservation of the proxy to *fully* preserve the lower (function)
analyses.
Combined, this gets both upward and downward analysis invalidation to
a point I'm happy with:
- A function pass invalidates its function analyses, and its parent's
module analyses.
- A module pass invalidates all of its functions' analyses including the
set of which functions are in the module.
- A function pass can preserve a module analysis pass.
- If all function passes preserve a module analysis pass, that
preservation persists. If any doesn't the module analysis is
invalidated.
- A module pass can opt into managing *all* function analysis
invalidation itself or *none*.
- The conservative default is none, and the proxy takes the maximally
conservative approach that works even if the set of functions has
changed.
- If a module pass opts into managing function analysis invalidation it
has to propagate the invalidation itself, the proxy just does nothing.
The only thing really missing is a way to query for a cached analysis or
nothing at all. With this, function passes can more safely request
a cached module analysis pass without fear of it accidentally running
part way through.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@195519 91177308-0d34-0410-b5e6-96231b3b80d8
run methods of the analysis passes.
Also generalizes and re-uses the SFINAE for transformation passes so
that users can write an analysis pass and only accept an analysis
manager if that is useful to their pass.
This completes the plumbing to make an analysis manager available
through every pass's run method if desired so that passes no longer need
to be constructed around them.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@195451 91177308-0d34-0410-b5e6-96231b3b80d8
Since the analysis managers were split into explicit function and module
analysis managers, it is now completely trivial to specify this when
building up the concept and model types explicitly, and it is impossible
to end up with a type error at run time. We instantiate a template when
registering a pass that will enforce the requirement at a type-system
level, and we produce a dynamic error on all the other query paths to
the analysis manager if the pass in question isn't registered.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@195447 91177308-0d34-0410-b5e6-96231b3b80d8
This is supposed to be the whole type of the IR unit, and so we
shouldn't pass a pointer to it but rather the value itself. In turn, we
need to provide a 'Module *' as that type argument (for example). This
will become more relevant with SCCs or other units which may not be
passed as a pointer type, but also brings consistency with the
transformation pass templates.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@195445 91177308-0d34-0410-b5e6-96231b3b80d8
rather than the constructors of passes.
This simplifies the APIs of passes significantly and removes an error
prone pattern where the *same* manager had to be given to every
different layer. With the new API the analysis managers themselves will
have to be cross connected with proxy analyses that allow a pass at one
layer to query for the analysis manager of another layer. The proxy will
both expose a handle to the other layer's manager and it will provide
the invalidation hooks to ensure things remain consistent across layers.
Finally, the outer-most analysis manager has to be passed to the run
method of the outer-most pass manager. The rest of the propagation is
automatic.
I've used SFINAE again to allow passes to completely disregard the
analysis manager if they don't need or want to care. This helps keep
simple things simple for users of the new pass manager.
Also, the system specifically supports passing a null pointer into the
outer-most run method if your pass pipeline neither needs nor wants to
deal with analyses. I find this of dubious utility as while some
*passes* don't care about analysis, I'm not sure there are any
real-world users of the pass manager itself that need to avoid even
creating an analysis manager. But it is easy to support, so there we go.
Finally I renamed the module proxy for the function analysis manager to
the more verbose but less confusing name of
FunctionAnalysisManagerModuleProxy. I hate this name, but I have no idea
what else to name these things. I'm expecting in the fullness of time to
potentially have the complete cross product of types at the proxy layer:
{Module,SCC,Function,Loop,Region}AnalysisManager{Module,SCC,Function,Loop,Region}Proxy
(except for XAnalysisManagerXProxy which doesn't make any sense)
This should make it somewhat easier to do the next phases which is to
build the upward proxy and get its invalidation correct, as well as to
make the invalidation within the Module -> Function mapping pass be more
fine grained so as to invalidate fewer fuction analyses.
After all of the proxy analyses are done and the invalidation working,
I'll finally be able to start working on the next two fun fronts: how to
adapt an existing pass to work in both the legacy pass world and the new
one, and building the SCC, Loop, and Region counterparts. Fun times!
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@195400 91177308-0d34-0410-b5e6-96231b3b80d8
it is completely optional, and sink the logic for handling the preserved
analysis set into it.
This allows us to implement the delegation logic desired in the proxy
module analysis for the function analysis manager where if the proxy
itself is preserved we assume the set of functions hasn't changed and we
do a fine grained invalidation by walking the functions in the module
and running the invalidate for them all at the manager level and letting
it try to invalidate any passes.
This in turn makes it blindingly obvious why we should hoist the
invalidate trait and have two collections of results. That allows
handling invalidation for almost all analyses without indirect calls and
it allows short circuiting when the preserved set is all.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@195338 91177308-0d34-0410-b5e6-96231b3b80d8
type and detect whether or not it provides an 'invalidate' member the
analysis manager should use.
This lets the overwhelming common case of *not* caring about custom
behavior when an analysis is invalidated be the the obvious default
behavior with no code written by the author of an analysis. Only when
they write code specifically to handle invalidation does it get used.
Both cases are actually covered by tests here. The test analysis uses
the default behavior, and the proxy module analysis actually has custom
behavior on invalidation that is firing correctly. (In fact, this is the
analysis which was the primary motivation for having custom invalidation
behavior in the first place.)
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@195332 91177308-0d34-0410-b5e6-96231b3b80d8
This proxy will fill the role of proxying invalidation events down IR
unit layers so that when a module changes we correctly invalidate
function analyses. Currently this is a very coarse solution -- any
change blows away the entire thing -- but the next step is to make
invalidation handling more nuanced so that we can propagate specific
amounts of invalidation from one layer to the next.
The test is extended to place a module pass between two function pass
managers each of which have preserved function analyses which get
correctly invalidated by the module pass that might have changed what
functions are even in the module.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@195304 91177308-0d34-0410-b5e6-96231b3b80d8
Enhance the tests to actually require moves in C++11 mode, in addition
to testing the moved-from state. Further enhance the tests to cover
copy-assignment into a moved-from object and moving a large-state
object. (Note that we can't really test small-state vs. large-state as
that isn't an observable property of the API really.) This should finish
addressing review on r195239.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@195261 91177308-0d34-0410-b5e6-96231b3b80d8
r195239, as well as a comment about the fact that assigning over
a moved-from object was in fact tested. Addresses some of the review
feedback on r195239.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@195260 91177308-0d34-0410-b5e6-96231b3b80d8
This adds a new set-like type which represents a set of preserved
analysis passes. The set is managed via the opaque PassT::ID() void*s.
The expected convenience templates for interacting with specific passes
are provided. It also supports a symbolic "all" state which is
represented by an invalid pointer in the set. This state is nicely
saturating as it comes up often. Finally, it supports intersection which
is used when finding the set of preserved passes after N different
transforms.
The pass API is then changed to return the preserved set rather than
a bool. This is much more self-documenting than the previous system.
Returning "none" is a conservatively correct solution just like
returning "true" from todays passes and not marking any passes as
preserved. Passes can also be dynamically preserved or not throughout
the run of the pass, and whatever gets returned is the binding state.
Finally, preserving "all" the passes is allowed for no-op transforms
that simply can't harm such things.
Finally, the analysis managers are changed to instead of blindly
invalidating all of the analyses, invalidate those which were not
preserved. This should rig up all of the basic preservation
functionality. This also correctly combines the preservation moving up
from one IR-layer to the another and the preservation aggregation across
N pass runs. Still to go is incrementally correct invalidation and
preservation across IR layers incrementally during N pass runs. That
will wait until we have a device for even exposing analyses across IR
layers.
While the core of this change is obvious, I'm not happy with the current
testing, so will improve it to cover at least some of the invalidation
that I can test easily in a subsequent commit.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@195241 91177308-0d34-0410-b5e6-96231b3b80d8
Somehow, this ADT got missed which is moderately terrifying considering
the efficiency of move for it.
The code to implement move semantics for it is pretty horrible
currently but was written to reasonably closely match the rest of the
code. Unittests that cover both copying and moving (at a basic level)
added.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@195239 91177308-0d34-0410-b5e6-96231b3b80d8
The FunctionPassManager is now itself a function pass. When run over
a function, it runs all N of its passes over that function. This is the
1:N mapping in the pass dimension only. This allows it to be used in
either a ModulePassManager or potentially some other manager that
works on IR units which are supersets of Functions.
This commit also adds the obvious adaptor to map from a module pass to
a function pass, running the function pass across every function in the
module.
The test has been updated to use this new pattern.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@195192 91177308-0d34-0410-b5e6-96231b3b80d8
a module-specific interface. This is the first of many steps necessary
to generalize the infrastructure such that we can support both
a Module-to-Function and Module-to-SCC-to-Function pass manager
nestings.
After a *lot* of attempts that never worked and didn't even make it to
a committable state, it became clear that I had gotten the layering
design of analyses flat out wrong. Four days later, I think I have most
of the plan for how to correct this, and I'm starting to reshape the
code into it. This is just a baby step I'm afraid, but starts separating
the fundamentally distinct concepts of function analysis passes and
module analysis passes so that in subsequent steps we can effectively
layer them, and have a consistent design for the eventual SCC layer.
As part of this, I've started some interface changes to make passes more
regular. The module pass accepts the module in the run method, and some
of the constructor parameters are gone. I'm still working out exactly
where constructor parameters vs. method parameters will be used, so
I expect this to fluctuate a bit.
This actually makes the invalidation less "correct" at this phase,
because now function passes don't invalidate module analysis passes, but
that was actually somewhat of a misfeature. It will return in a better
factored form which can scale to other units of IR. The documentation
has gotten less verbose and helpful.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@195189 91177308-0d34-0410-b5e6-96231b3b80d8