NFC currently but required as a prerequisite for using
the Microsoft resource compiler in conjunction with
CMake's ninja generator, which knows how to filter flags
appropriately, but not definitions.
Differential Revision: http://reviews.llvm.org/D8188
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@231924 91177308-0d34-0410-b5e6-96231b3b80d8
As of r231908, the test I added in r231902 actually gets run - but I'd
checked in a stale version of the input so it didn't pass. Fix the
input and un-xfail the test.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@231911 91177308-0d34-0410-b5e6-96231b3b80d8
This causes a crash if the referenced intrinsic was malformed. In this case, we
would already have reported an error on the referenced intrinsic, but then
crashed on the second one when it tried to introspect the first without
error checking.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@231910 91177308-0d34-0410-b5e6-96231b3b80d8
There were also errors in the CHECK line which I fixed and the test
doesn't actually pass as the "100" is in the wrong line. Not sure
whether this is a test failure or a coverage failure so making the test
XFAIL for now.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@231908 91177308-0d34-0410-b5e6-96231b3b80d8
MachineFunction argument so that it can look up the subtarget
rather than using a cached one in some Targets.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@231888 91177308-0d34-0410-b5e6-96231b3b80d8
Should bring the cygwin bots back.
I added a triple to the test that was failing so that it would have failed
on Linux.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@231882 91177308-0d34-0410-b5e6-96231b3b80d8
Given that large parts of inst combine is restricted to instructions which have one use, getting rid of a use on the condition can help the effectiveness of the optimizer. Also, it allows the condition to potentially be deleted by instcombine rather than waiting for another pass.
I noticed this completely by accident in another test case. It's not anything that actually came from a real workload.
p.s. We should probably do the same thing for switch instructions.
Differential Revision: http://reviews.llvm.org/D8220
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@231881 91177308-0d34-0410-b5e6-96231b3b80d8
There are still 4 tests that check for DW_AT_MIPS_linkage_name,
because they specify DWARF 2 or 3 in the module metadata. So, I didn't
create an explicit version-based test for the attribute.
Differential Revision: http://reviews.llvm.org/D8227
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@231880 91177308-0d34-0410-b5e6-96231b3b80d8
This patch adds limited support in ValueTracking for inferring known bits of a value from conditional expressions which must be true to reach the instruction we're trying to optimize. At this time, the feature is off by default. Once landed, I'm hoping for feedback from others on both profitability and compile time impact.
Forms of conditional value propagation have been tried in LLVM before and have failed due to compile time problems. In an attempt to side step that, this patch only considers conditions where the edge leaving the branch dominates the context instruction. It does not attempt full dataflow. Even with that restriction, it handles many interesting cases:
* Early exits from functions
* Early exits from loops (for context instructions in the loop and after the check)
* Conditions which control entry into loops, including multi-version loops (such as those produced during vectorization, IRCE, loop unswitch, etc..)
Possible applications include optimizing using information provided by constructs such as: preconditions, assumptions, null checks, & range checks.
This patch implements two approaches to the problem that need further benchmarking. Approach 1 is to directly walk the dominator tree looking for interesting conditions. Approach 2 is to inspect other uses of the value being queried for interesting comparisons. From initial benchmarking, it appears that Approach 2 is faster than Approach 1, but this needs to be further validated.
Differential Revision: http://reviews.llvm.org/D7708
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@231879 91177308-0d34-0410-b5e6-96231b3b80d8
update all ports accordingly. Required a couple of small rewrites
in handling subtarget features during creation in PPC.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@231861 91177308-0d34-0410-b5e6-96231b3b80d8
This lets us pass the symbol to the constructor and avoid the mutable field.
This also opens the way for outputting the symbol only when needed, instead
of outputting them at the start of the file.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@231859 91177308-0d34-0410-b5e6-96231b3b80d8
MCCodeEmitter creation routine based on TargetMachine since the only
64-bit R600 gpus are part of the GCN target.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@231856 91177308-0d34-0410-b5e6-96231b3b80d8
- Use TargetLowering to check for the actual cost of each extension.
- Provide a factorized method to check for the cost of an extension:
TargetLowering::isExtFree.
- Provide a virtual method TargetLowering::isExtFreeImpl for targets to be able
to tune the cost of non-free extensions.
This refactoring offers a better granularity to model what really happens on
different targets.
No performance changes and very few code differences.
Part of <rdar://problem/19267165>
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@231855 91177308-0d34-0410-b5e6-96231b3b80d8
The debug message was pretty confusing here. It only reported the
situation with memchecks without the result of the dependence analysis.
Now it prints whether the loop is safe from the POV of the dependence
analysis and if yes, whether we need memchecks.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@231854 91177308-0d34-0410-b5e6-96231b3b80d8
Summary: This change leverages the cross-compiling functionality in the build system to build a release tablegen executable for use during the build.
Reviewers: resistor, rnk
Reviewed By: rnk
Subscribers: rnk, joker.eph, llvm-commits
Differential Revision: http://reviews.llvm.org/D7349
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@231842 91177308-0d34-0410-b5e6-96231b3b80d8
This adds new node types for each intrinsic.
For instance, for addv, we have AArch64ISD::UADDV, such that:
(v4i32 (uaddv ...))
is the same as
(v4i32 (scalar_to_vector (i32 (int_aarch64_neon_uaddv ...))))
that is,
(v4i32 (INSERT_SUBREG (v4i32 (IMPLICIT_DEF)),
(i32 (int_aarch64_neon_uaddv ...)), ssub)
In a combine, we transform all such across-vector-lanes intrinsics to:
(i32 (extract_vector_elt (uaddv ...), 0))
This has one big advantage: by making the extract_element explicit, we
enable the existing patterns for lane-aware instructions to fire.
This lets us avoid needlessly going through the GPRs. Consider:
uint32x4_t test_mul(uint32x4_t a, uint32x4_t b) {
return vmulq_n_u32(a, vaddvq_u32(b));
}
We now generate:
addv.4s s1, v1
mul.4s v0, v0, v1[0]
instead of the previous:
addv.4s s1, v1
fmov w8, s1
dup.4s v1, w8
mul.4s v0, v1, v0
rdar://20044838
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@231840 91177308-0d34-0410-b5e6-96231b3b80d8
Most are redundant, and they never seem to fire.
The V128 integer patterns already exist in the INS multiclass.
The duplicates only fire when the vector index type isn't i64,
because they accept "imm" instead of an explicit "i64", as the
instruction definition patterns do.
TLI::getVectorIdxTy is i64 on AArch64, so this should never happen.
Also, one of them had a typo: for i64, INSvi32lane was used.
I noticed because I mistakenly used an explicit i32 as the idx type,
and got ins.s for an i64 vector_insert.
The V64 patterns also don't seem to ever fire, as V64 vector
extract/insert are legalized to V128.
The equivalent float patterns are unique and useful, so keep them.
No functional change intended; none exhibited on the LIT and LNT tests.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@231838 91177308-0d34-0410-b5e6-96231b3b80d8
Follow up from r231505.
Fix the non-determinism by using a MapVector and reintroduce the AArch64
testcase. Defer deleting the got candidates up to the end and remove
them in a bulk, avoiding linear time removal of each element.
Thanks to Renato Golin for trying it out on other platforms.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@231830 91177308-0d34-0410-b5e6-96231b3b80d8