Original message:
Invert the section relocation map.
It now points from rel section to section. Use it to set sh_info, avoiding
a brittle name lookup.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@229539 91177308-0d34-0410-b5e6-96231b3b80d8
Original message:
Create the Seciton -> Rel Section map when it is first needed. NFC.
Saves a walk over every section.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@229536 91177308-0d34-0410-b5e6-96231b3b80d8
We were trying to fold into implicit uses, which led to out of bounds
access of the MCInstrDesc::OpInfo arrray.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@229533 91177308-0d34-0410-b5e6-96231b3b80d8
Change the memory operands in sse12_fp_packed_scalar_logical_alias from scalars to vectors.
That's what the hardware packed logical FP instructions define: 128-bit memory operands.
There are no scalar versions of these instructions...because this is x86.
Generating the wrong code (folding a scalar load into a 128-bit load) is still possible
using the peephole optimization pass and the load folding tables. We won't completely
solve this bug until we either fix the lowering in fabs/fneg/fcopysign and any other
places where scalar FP logic is created or fix the load folding in foldMemoryOperandImpl()
to make sure it isn't changing the size of the load.
Differential Revision: http://reviews.llvm.org/D7474
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@229531 91177308-0d34-0410-b5e6-96231b3b80d8
There was no reason to keep this private in config.h, and users
requested that it be available in PR22615.
Also fix a bug where patch versions of '0' would cause the macro to
remain undefined. The "#cmakedefine" command only creates a macro if the
named variable would be considered true in the context of an if().
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@229529 91177308-0d34-0410-b5e6-96231b3b80d8
initialization. Initialize the subtarget once per function and
migrate Emit{Start|End}OfAsmFile to either use attributes on the
TargetMachine or get information from the subtarget we'd use
for assembling. One bit (getISAEncoding) touched the general
AsmPrinter and the debug output. Handle this one by passing
the function for the subprogram down and updating all callers
and users.
The top-level-ness of the ARM attribute output for assembly is,
by nature, contrary to how we'd want to do this for an LTO
situation where we have multiple cpu architectures so this
solution is good enough for now.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@229528 91177308-0d34-0410-b5e6-96231b3b80d8
The 64-bit MIPS ELF archive file format is used by MIPS64 targets.
The main difference from a regular archive file is the symbol table format:
1. ar_name is equal to "/SYM64/"
2. number of symbols and offsets are 64-bit integers
http://techpubs.sgi.com/library/manuals/4000/007-4658-001/pdf/007-4658-001.pdf
Page 96
The patch allows reading of such archive files by llvm-nm, llvm-objdump
and other tools. But it does not support archive files with number of symbols
and/or offsets exceed 2^32. I think it is a rather rare case requires more
significant modification of `Archive` class code.
http://reviews.llvm.org/D7546
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@229520 91177308-0d34-0410-b5e6-96231b3b80d8
This is a follow-on patch to:
http://reviews.llvm.org/D7093
That patch canonicalized constant splats as build_vectors,
and this patch removes the constant check so we can canonicalize
all splats as build_vectors.
This fixes the 2nd test case in PR22283:
http://llvm.org/bugs/show_bug.cgi?id=22283
The unfortunate code duplication between SelectionDAG and DAGCombiner
is discussed in the earlier patch review. At least this patch is just
removing code...
This improves an existing x86 AVX test and changes codegen in an ARM test.
Differential Revision: http://reviews.llvm.org/D7389
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@229511 91177308-0d34-0410-b5e6-96231b3b80d8
If any of the bots complain (perhaps due to an antiquated version of an STL implementation), I will revert.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@229502 91177308-0d34-0410-b5e6-96231b3b80d8
Flag -fast-isel-abort is required in order to verify that X86FastISel
never fails to select FPExt (float-to-double) and FPTrunc (double-to-float).
No Functional change intended.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@229489 91177308-0d34-0410-b5e6-96231b3b80d8
GCC 4.8 reported two new warnings due to comparisons
between signed and unsigned integer expressions. The new warnings were
accidentally introduced by revision 229480.
Added explicit casts to silence the warnings. No functional change intended.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@229488 91177308-0d34-0410-b5e6-96231b3b80d8
This added API to the InstrProfWriter to write to a string so I could
write unittests without using temp files. This doesn't really work,
since the format has tighter alignment requirements than a char.
This reverts r229478 and its follow-up, r229481.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@229483 91177308-0d34-0410-b5e6-96231b3b80d8
- added mask types v8i1 and v16i1 to possible function parameters
- enabled passing 512-bit vectors in standard CC
- added a test for KNL intel_ocl_bi conventions
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@229482 91177308-0d34-0410-b5e6-96231b3b80d8
Vector zext tends to get legalized into a vector anyext, represented as a vector shuffle with an undef vector + a bitcast, that gets ANDed with a mask that zeroes the undef elements.
Combine this into an explicit shuffle with a zero vector instead. This allows shuffle lowering to match it as a zext, instead of matching it as an anyext and emitting an explicit AND.
This combine only covers a subset of the cases, but it's a start.
Differential Revision: http://reviews.llvm.org/D7666
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@229480 91177308-0d34-0410-b5e6-96231b3b80d8
Add these tests again, but use va_list instead of initializer lists.
This reverts r229456, reapplying r229455.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@229478 91177308-0d34-0410-b5e6-96231b3b80d8
wasConservativelyAllocatable() is only called to assert that a conservatively
allocatable node wasn't forced to spill.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@229477 91177308-0d34-0410-b5e6-96231b3b80d8
initialization. Initialize the subtarget once per function and
migrate EmitStartOfAsmFile to either use attributes on the
TargetMachine or get information from all of the various
subtargets.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@229475 91177308-0d34-0410-b5e6-96231b3b80d8
This required changing how the computation of the ABI is handled
and how some of the checks for ABI/target are done.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@229471 91177308-0d34-0410-b5e6-96231b3b80d8
The version of the tutorial uses the new compile callbacks API to inject stubs
that trigger IRGen & Codegen of their respective function bodies when they are
first called.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@229466 91177308-0d34-0410-b5e6-96231b3b80d8
This allows it to match still more places where previously we would have
to fall back on floating point shuffles or other more complex lowering
strategies.
I'm hoping to replace some of the hand-rolled unpack matching with this
routine is it gets more and more clever.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@229463 91177308-0d34-0410-b5e6-96231b3b80d8
BDCE is a bit-tracking dead code elimination pass. It is based on ADCE (the
"aggressive DCE" pass), with the added capability to track dead bits of integer
valued instructions and remove those instructions when all of the bits are
dead.
Currently, it does not actually do this all-bits-dead removal, but rather
replaces the instruction's uses with a constant zero, and lets instcombine (and
the later run of ADCE) do the rest. Because we essentially get a run of ADCE
"for free" while tracking the dead bits, we also do what ADCE does and removes
actually-dead instructions as well (this includes instructions newly trivially
dead because all bits were dead, but not all such instructions can be removed).
The motivation for this is a case like:
int __attribute__((const)) foo(int i);
int bar(int x) {
x |= (4 & foo(5));
x |= (8 & foo(3));
x |= (16 & foo(2));
x |= (32 & foo(1));
x |= (64 & foo(0));
x |= (128& foo(4));
return x >> 4;
}
As it turns out, if you order the bit-field insertions so that all of the dead
ones come last, then instcombine will remove them. However, if you pick some
other order (such as the one above), the fact that some of the calls to foo()
are useless is not locally obvious, and we don't remove them (without this
pass).
I did a quick compile-time overhead check using sqlite from the test suite
(Release+Asserts). BDCE took ~0.4% of the compilation time (making it about
twice as expensive as ADCE).
I've not looked at why yet, but we eliminate instructions due to having
all-dead bits in:
External/SPEC/CFP2006/447.dealII/447.dealII
External/SPEC/CINT2006/400.perlbench/400.perlbench
External/SPEC/CINT2006/403.gcc/403.gcc
MultiSource/Applications/ClamAV/clamscan
MultiSource/Benchmarks/7zip/7zip-benchmark
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@229462 91177308-0d34-0410-b5e6-96231b3b80d8
This patch replaces most of the Orc indirection utils API with a new class:
JITCompileCallbackManager, which creates and manages JIT callbacks.
Exposing this functionality directly allows the user to create callbacks that
are associated with user supplied compilation actions. For example, you can
create a callback to lazyily IR-gen something from an AST. (A kaleidoscope
example demonstrating this will be committed shortly).
This patch also refactors the CompileOnDemand layer to use the
JITCompileCallbackManager API.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@229461 91177308-0d34-0410-b5e6-96231b3b80d8
This test was failing on non-x86 hosts because it specified a cpu of x86_64,
but not an architecture. x86_64 is obviously not a valid cpu on all
architectures.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@229460 91177308-0d34-0410-b5e6-96231b3b80d8
While looking at a heap profile of a clang LTO bootstrap with -g, I
noticed that 2.2% of memory in an `llvm-lto` of clang is from calling
`DebugLoc::get()` in `collectVariableInfo()` (accounting for ~40% of
memory used for `MDLocation`s).
I suspect this was introduced by r226736, whose goal was to prevent
uniquing of `DebugLoc`s (goal achieved, if so).
There's no reason we need a `DebugLoc` here at all -- it was just being
used for (in)convenient API -- so the fix is to pass the scope and
inlined-at directly to `LexicalScopes::findInlinedScope()`.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@229459 91177308-0d34-0410-b5e6-96231b3b80d8
Our register allocation has become better recently, it seems, and is now
starting to generate cross-block copies into inflated register classes. These
copies are not transformed into subregister insertions/extractions by the
PPCVSXCopy class, and so need to be handled directly by
PPCInstrInfo::copyPhysReg. The code to do this was *almost* there, but not
quite (it was unnecessarily restricting itself to only the direct
sub/super-register-class case (not copying between, for example, something in
VRRC and the lower-half of VSRC which are super-registers of F8RC).
Triggering this behavior manually is difficult; I'm including two
bugpoint-reduced test cases from the test suite.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@229457 91177308-0d34-0410-b5e6-96231b3b80d8