This adds minimalistic support for PHI nodes to llvm.objectsize() evaluation
fingers crossed so that it does break clang boostrap again..
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@176408 91177308-0d34-0410-b5e6-96231b3b80d8
this is similar to getObjectSize(), but doesnt subtract the offset
tweak the BasicAA code accordingly (per PR14988)
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@176407 91177308-0d34-0410-b5e6-96231b3b80d8
This matters for example in following matrix multiply:
int **mmult(int rows, int cols, int **m1, int **m2, int **m3) {
int i, j, k, val;
for (i=0; i<rows; i++) {
for (j=0; j<cols; j++) {
val = 0;
for (k=0; k<cols; k++) {
val += m1[i][k] * m2[k][j];
}
m3[i][j] = val;
}
}
return(m3);
}
Taken from the test-suite benchmark Shootout.
We estimate the cost of the multiply to be 2 while we generate 9 instructions
for it and end up being quite a bit slower than the scalar version (48% on my
machine).
Also, properly differentiate between avx1 and avx2. On avx-1 we still split the
vector into 2 128bits and handle the subvector muls like above with 9
instructions.
Only on avx-2 will we have a cost of 9 for v4i64.
I changed the test case in test/Transforms/LoopVectorize/X86/avx1.ll to use an
add instead of a mul because with a mul we now no longer vectorize. I did
verify that the mul would be indeed more expensive when vectorized with 3
kernels:
for (i ...)
r += a[i] * 3;
for (i ...)
m1[i] = m1[i] * 3; // This matches the test case in avx1.ll
and a matrix multiply.
In each case the vectorized version was considerably slower.
radar://13304919
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@176403 91177308-0d34-0410-b5e6-96231b3b80d8
The LoopVectorizer often runs multiple times on the same function due to inlining.
When this happens the loop vectorizer often vectorizes the same loops multiple times, increasing code size and adding unneeded branches.
With this patch, the vectorizer during vectorization puts metadata on scalar loops and marks them as 'already vectorized' so that it knows to ignore them when it sees them a second time.
PR14448.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@176399 91177308-0d34-0410-b5e6-96231b3b80d8
Fix the way resources are counted. I'm taking some time to cleanup the
way MachineScheduler handles in-order machine resources. Eventually
we'll need more PPC/Atom test cases in tree.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@176390 91177308-0d34-0410-b5e6-96231b3b80d8
The sys::fs::is_directory() check is unnecessary because, if the filename is
a directory, the function will fail anyway with the same error code returned.
Remove the check to avoid an unnecessary stat call.
Someone needs to review on windows and see if the check is necessary there or not.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@176386 91177308-0d34-0410-b5e6-96231b3b80d8
This patch eliminates the need to emit a constant move instruction when this
pattern is matched:
(select (setgt a, Constant), T, F)
The pattern above effectively turns into this:
(conditional-move (setlt a, Constant + 1), F, T)
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@176384 91177308-0d34-0410-b5e6-96231b3b80d8
Also removed the comments of "should produce..." because they completely
don't match the actually produced output.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@176381 91177308-0d34-0410-b5e6-96231b3b80d8
detail.
The was this test was written, it was relying on an implementation detail
(fixups) and hence was very brittle (relying, among other things, on the
exact ordering of statistics printed by MC).
The test was rewritten to check a more observable output difference. While it
doesn't cover 100% of the things the original test covered, it's a good
practice to write regression tests this way. If we want to check that
internal details and invariants hold, such tests should be expressed as unit
tests.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@176377 91177308-0d34-0410-b5e6-96231b3b80d8
The make (all) target takes care of creating lit configs and auto-generating
tests. The problem with the original 'lit.site.cfg' target is it's not
recursive and doesn't fully create everything necessary for testing
clang-tools-extra.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@176374 91177308-0d34-0410-b5e6-96231b3b80d8
- These tests wont't crash on trunk but would be better to add them so that
they don't break again in the future.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@176369 91177308-0d34-0410-b5e6-96231b3b80d8
This reduces the time actually spent doing string to ID conversion and shows a 10% improvement in compile time for a particularly bad case that involves ARM Neon intrinsics (these have many overloads).
Patch by Jean-Luc Duprat!
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@176365 91177308-0d34-0410-b5e6-96231b3b80d8
- ISD::SHL/SRL/SRA must have either both scalar or both vector operands
but TLI.getShiftAmountTy() so far only return scalar type. As a
result, backend logic assuming that breaks.
- Rename the original TLI.getShiftAmountTy() to
TLI.getScalarShiftAmountTy() and re-define TLI.getShiftAmountTy() to
return target-specificed scalar type or the same vector type as the
1st operand.
- Fix most TICG logic assuming TLI.getShiftAmountTy() a simple scalar
type.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@176364 91177308-0d34-0410-b5e6-96231b3b80d8
dispatch code. As far as I can tell the thumb2 code is behaving as expected.
I was able to compile and run the associated test case for both arm and thumb1.
rdar://13066352
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@176363 91177308-0d34-0410-b5e6-96231b3b80d8
Signed-off-by: Christian König <christian.koenig@amd.com>
Reviewed-by: Tom Stellard <thomas.stellard@amd.com>
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@176359 91177308-0d34-0410-b5e6-96231b3b80d8
v2: based on Michels patch, but now allows copying of all registers sizes.
Signed-off-by: Michel Dänzer <michel.daenzer@amd.com>
Signed-off-by: Christian König <christian.koenig@amd.com>
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@176346 91177308-0d34-0410-b5e6-96231b3b80d8
It's much easier to specify the encoding with tablegen directly.
Signed-off-by: Christian König <christian.koenig@amd.com>
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@176344 91177308-0d34-0410-b5e6-96231b3b80d8
This function will be used later when the capability to search delay slot
filling instructions in successor blocks is added. No intended functionality
changes.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@176325 91177308-0d34-0410-b5e6-96231b3b80d8
We avoided computing DAG height/depth during Node printing because it
shouldn't depend on an otherwise valid DAG. But this has become far
too annoying for the common case of a valid DAG where we want to see
valid values. If doing the computation on-the-fly turns out to be a
problem in practice, then I'll add a mode to the diagnostics to only
force it when we're likely to have a valid DAG, otherwise explicitly
print INVALID instead of bogus numbers. For now, just go for it all
the time.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@176314 91177308-0d34-0410-b5e6-96231b3b80d8