This adds location info for all llvm_unreachable calls (which is a macro now) in
!NDEBUG builds.
In NDEBUG builds location info and the message is off (it only prints
"UREACHABLE executed").
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@75640 91177308-0d34-0410-b5e6-96231b3b80d8
Make llvm_unreachable take an optional string, thus moving the cerr<< out of
line.
LLVM_UNREACHABLE is now a simple wrapper that makes the message go away for
NDEBUG builds.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@75379 91177308-0d34-0410-b5e6-96231b3b80d8
move loads back past a check that the load address
is valid, see new testcase. The test that went
in with 72661 has exactly this case, except that
the conditional it's moving past is checking
something else; I've settled for changing that
test to reference a global, not a pointer. It
may be possible to scan all the tests you pass and
make sure none of them are checking any component
of the address, but it's not trivial and I'm not
trying to do that here.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@73632 91177308-0d34-0410-b5e6-96231b3b80d8
integer and floating-point opcodes, introducing
FAdd, FSub, and FMul.
For now, the AsmParser, BitcodeReader, and IRBuilder all preserve
backwards compatability, and the Core LLVM APIs preserve backwards
compatibility for IR producers. Most front-ends won't need to change
immediately.
This implements the first step of the plan outlined here:
http://nondot.org/sabre/LLVMNotes/IntegerOverflow.txt
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@72897 91177308-0d34-0410-b5e6-96231b3b80d8
the optimizers about this. For example, a readonly
function with no uses cannot be removed unless it is
also marked nounwind.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@71071 91177308-0d34-0410-b5e6-96231b3b80d8
CFG when there is exactly one predecessor where the load is not available.
This is designed to not increase code size but still eliminate partially
redundant loads. This fires 1765 times on 403.gcc even though it doesn't
do critical edge splitting yet (the most common reason for it to fail).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@61027 91177308-0d34-0410-b5e6-96231b3b80d8
cleans up the generated code a bit. This should have the added benefit of
not randomly renaming functions/globals like my previous patch did. :)
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@61023 91177308-0d34-0410-b5e6-96231b3b80d8
llvm[2]: Linking Release executable opt (without symbols)
...
Undefined symbols:
"llvm::APFloat::IEEEsingle", referenced from:
__ZN4llvm7APFloat10IEEEsingleE$non_lazy_ptr in libLLVMCore.a(Constants.o)
__ZN4llvm7APFloat10IEEEsingleE$non_lazy_ptr in libLLVMCore.a(AsmWriter.o)
__ZN4llvm7APFloat10IEEEsingleE$non_lazy_ptr in libLLVMCore.a(ConstantFold.o)
"llvm::APFloat::IEEEdouble", referenced from:
__ZN4llvm7APFloat10IEEEdoubleE$non_lazy_ptr in libLLVMCore.a(Constants.o)
__ZN4llvm7APFloat10IEEEdoubleE$non_lazy_ptr in libLLVMCore.a(AsmWriter.o)
__ZN4llvm7APFloat10IEEEdoubleE$non_lazy_ptr in libLLVMCore.a(ConstantFold.o)
ld: symbol(s) not found
This is in release mode. To replicate, compile llvm and llvm-gcc in optimized
mode. Then build llvm, in optimized mode, with the newly created compiler.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@60977 91177308-0d34-0410-b5e6-96231b3b80d8
of a pointer. This allows is to catch more equivalencies. For example,
the type_lists_compatible_p function used to require two iterations of
the gvn pass (!) to delete its 18 redundant loads because the first pass
would CSE all the addressing computation cruft, which would unblock the
second memdep/gvn passes from recognizing them. This change allows
memdep/gvn to catch all 18 when run just once on the function (as is
typical :) instead of just 3.
On all of 403.gcc, this bumps up the # reundandancies found from:
63 gvn - Number of instructions PRE'd
153991 gvn - Number of instructions deleted
50069 gvn - Number of loads deleted
to:
63 gvn - Number of instructions PRE'd
154137 gvn - Number of instructions deleted
50185 gvn - Number of loads deleted
+120 loads deleted isn't bad.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@60799 91177308-0d34-0410-b5e6-96231b3b80d8
MemDep::getNonLocalPointerDependency method. There are
some open issues with this (missed optimizations) and
plenty of future work, but this does allow GVN to eliminate
*slightly* more loads (49246 vs 49033).
Switching over now allows simplification of the other code
path in memdep.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@60780 91177308-0d34-0410-b5e6-96231b3b80d8
1. Merge the 'None' result into 'Normal', making loads
and stores return their dependencies on allocations as Normal.
2. Split the 'Normal' result into 'Clobber' and 'Def' to
distinguish between the cases when memdep knows the value is
produced from when we just know if may be changed.
3. Move some of the logic for determining whether readonly calls
are CSEs into memdep instead of it being in GVN. This still
leaves verification that the arguments are hte same to GVN to
let it know about value equivalences in different contexts.
4. Change memdep's call/call dependency analysis to use
getModRefInfo(CallSite,CallSite) instead of doing something
very weak. This only really matters for things like DSA, but
someday maybe we'll have some other decent context sensitive
analyses :)
5. This reimplements the guts of memdep to handle the new results.
6. This simplifies GVN significantly:
a) readonly call CSE is slightly simpler
b) I eliminated the "getDependencyFrom" chaining for load
elimination and load CSE doesn't have to worry about
volatile (they are always clobbers) anymore.
c) GVN no longer does any 'lastLoad' caching, leaving it to
memdep.
7. The logic in DSE is simplified a bit and sped up. A potentially
unsafe case was eliminated.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@60607 91177308-0d34-0410-b5e6-96231b3b80d8