Alias with unnamed_addr were in a strange state. It is stored in GlobalValue,
the language reference talks about "unnamed_addr aliases" but the verifier
was rejecting them.
It seems natural to allow unnamed_addr in aliases:
* It is a property of how it is accessed, not of the data itself.
* It is perfectly possible to write code that depends on the address
of an alias.
This patch then makes unname_addr legal for aliases. One side effect is that
the syntax changes for a corner case: In globals, unnamed_addr is now printed
before the address space.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@210302 91177308-0d34-0410-b5e6-96231b3b80d8
This patch changes GlobalAlias to point to an arbitrary ConstantExpr and it is
up to MC (or the system assembler) to decide if that expression is valid or not.
This reduces our ability to diagnose invalid uses and how early we can spot
them, but it also lets us do things like
@test5 = alias inttoptr(i32 sub (i32 ptrtoint (i32* @test2 to i32),
i32 ptrtoint (i32* @bar to i32)) to i32*)
An important implication of this patch is that the notion of aliased global
doesn't exist any more. The alias has to encode the information needed to
access it in its metadata (linkage, visibility, type, etc).
Another consequence to notice is that getSection has to return a "const char *".
It could return a NullTerminatedStringRef if there was such a thing, but when
that was proposed the decision was to just uses "const char*" for that.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@210062 91177308-0d34-0410-b5e6-96231b3b80d8
This patch changes the design of GlobalAlias so that it doesn't take a
ConstantExpr anymore. It now points directly to a GlobalObject, but its type is
independent of the aliasee type.
To avoid changing all alias related tests in this patches, I kept the common
syntax
@foo = alias i32* @bar
to mean the same as now. The cases that used to use cast now use the more
general syntax
@foo = alias i16, i32* @bar.
Note that GlobalAlias now behaves a bit more like GlobalVariable. We
know that its type is always a pointer, so we omit the '*'.
For the bitcode, a nice surprise is that we were writing both identical types
already, so the format change is minimal. Auto upgrade is handled by looking
through the casts and no new fields are needed for now. New bitcode will
simply have different types for Alias and Aliasee.
One last interesting point in the patch is that replaceAllUsesWith becomes
smart enough to avoid putting a ConstantExpr in the aliasee. This seems better
than checking and updating every caller.
A followup patch will delete getAliasedGlobal now that it is redundant. Another
patch will add support for an explicit offset.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@209007 91177308-0d34-0410-b5e6-96231b3b80d8
This is part of the fix for pr10367. A GlobalAlias always has a pointer type,
so just have the constructor build the type.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@208983 91177308-0d34-0410-b5e6-96231b3b80d8
We already had an assert for foo->RAUW(foo), but not for something like
foo->RAUW(GEP(foo)) and would go in an infinite loop trying to apply
the replacement.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@208663 91177308-0d34-0410-b5e6-96231b3b80d8
Split from the musttail inliner change. This will be covered by an opt
test when the inliner change lands.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@208126 91177308-0d34-0410-b5e6-96231b3b80d8
this code ages ago and lost track of it. Seems worth doing though --
this thing can get called from places that would benefit from knowing
that std::distance is O(1). Also add a very fledgeling unittest for
Users and make sure various aspects of this seem to work reasonably.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@206453 91177308-0d34-0410-b5e6-96231b3b80d8
In CallInst, op_end() points at the callee, which we don't want to iterate over
when just iterating over arguments. Now take this into account when returning
a iterator_range from arg_operands. Similar reasoning for InvokeInst.
Also adds a unit test to verify this actually works as expected.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@204851 91177308-0d34-0410-b5e6-96231b3b80d8
order to use the single assignment. That's probably worth doing for
a lot of these types anyways as they may have non-trivial moves and so
getting copy elision in more places seems worthwhile.
I've tried to add some tests that actually catch this mistake, and one
of the types is now well tested but the others' tests still fail to
catch this. I'll keep working on tests, but this gets the core pattern
right.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@203780 91177308-0d34-0410-b5e6-96231b3b80d8
it is available. Also make the move semantics sufficiently correct to
tolerate move-only passes, as the PassManagers *are* move-only passes.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@203391 91177308-0d34-0410-b5e6-96231b3b80d8
This compiles with no changes to clang/lld/lldb with MSVC and includes
overloads to various functions which are used by those projects and llvm
which have OwningPtr's as parameters. This should allow out of tree
projects some time to move. There are also no changes to libs/Target,
which should help out of tree targets have time to move, if necessary.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@203083 91177308-0d34-0410-b5e6-96231b3b80d8
source file had already been moved. Also move the unittest into the IR
unittest library.
This may seem an odd thing to put in the IR library but we only really
use this with instructions and it needs the LLVM context to work, so it
is intrinsically tied to the IR library.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@202842 91177308-0d34-0410-b5e6-96231b3b80d8
a bit surprising, as the class is almost entirely abstracted away from
any particular IR, however it encodes the comparsion predicates which
mutate ranges as ICmp predicate codes. This is reasonable as they're
used for both instructions and constants. Thus, it belongs in the IR
library with instructions and constants.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@202838 91177308-0d34-0410-b5e6-96231b3b80d8
directly care about the Value class (it is templated so that the key can
be any arbitrary Value subclass), it is in fact concretely tied to the
Value class through the ValueHandle's CallbackVH interface which relies
on the key type being some Value subclass to establish the value handle
chain.
Ironically, the unittest is already in the right library.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@202824 91177308-0d34-0410-b5e6-96231b3b80d8
Move the test for this class into the IR unittests as well.
This uncovers that ValueMap too is in the IR library. Ironically, the
unittest for ValueMap is useless in the Support library (honestly, so
was the ValueHandle test) and so it already lives in the IR unittests.
Mmmm, tasty layering.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@202821 91177308-0d34-0410-b5e6-96231b3b80d8
No tool does this currently, but as everything else in a module we should be
able to change its DataLayout.
Most of the fix is in DataLayout to make sure it can be reset properly.
The test uses Module::setDataLayout since the fact that we mutate a DataLayout
is an implementation detail. The module could hold a OwningPtr<DataLayout> and
the DataLayout itself could be immutable.
Thanks to Philip Reames for pushing me in the right direction.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@202198 91177308-0d34-0410-b5e6-96231b3b80d8
Instead, have a DataLayoutPass that holds one. This will allow parts of LLVM
don't don't handle passes to also use DataLayout.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@202168 91177308-0d34-0410-b5e6-96231b3b80d8
I think this was just over-eagerness on my part. The analysis results
need to often be non-const because they need to (in some cases at least)
be updated by the transformation pass in order to remain correct. It
also makes lazy analyses (a common case) needlessly annoying to write in
order to make their entire state mutable.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@200881 91177308-0d34-0410-b5e6-96231b3b80d8
different number of elements.
Bitcasts were passing with vectors of pointers with different number of
elements since the number of elements was checking
SrcTy->getVectorNumElements() == SrcTy->getVectorNumElements() which
isn't helpful. The addrspacecast was also wrong, but that case at least
is caught by the verifier. Refactor bitcast and addrspacecast handling
in castIsValid to be more readable and fix this problem.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@199821 91177308-0d34-0410-b5e6-96231b3b80d8
This makes the 'verifyFunction' and 'verifyModule' functions totally
independent operations on the LLVM IR. It also cleans up their API a bit
by lifting the abort behavior into their clients and just using an
optional raw_ostream parameter to control printing.
The implementation of the verifier is now just an InstVisitor with no
multiple inheritance. It also is significantly more const-correct, and
hides the const violations internally. The two layers that force us to
break const correctness are building a DomTree and dispatching through
the InstVisitor.
A new VerifierPass is used to implement the legacy pass manager
interface in terms of the other pieces.
The error messages produced may be slightly different now, and we may
have slightly different short circuiting behavior with different usage
models of the verifier, but generally everything works equivalently and
this unblocks wiring the verifier up to the new pass manager.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@199569 91177308-0d34-0410-b5e6-96231b3b80d8
can be used by both the new pass manager and the old.
This removes it from any of the virtual mess of the pass interfaces and
lets it derive cleanly from the DominatorTreeBase<> template. In turn,
tons of boilerplate interface can be nuked and it turns into a very
straightforward extension of the base DominatorTree interface.
The old analysis pass is now a simple wrapper. The names and style of
this split should match the split between CallGraph and
CallGraphWrapperPass. All of the users of DominatorTree have been
updated to match using many of the same tricks as with CallGraph. The
goal is that the common type remains the resulting DominatorTree rather
than the pass. This will make subsequent work toward the new pass
manager significantly easier.
Also in numerous places things became cleaner because I switched from
re-running the pass (!!! mid way through some other passes run!!!) to
directly recomputing the domtree.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@199104 91177308-0d34-0410-b5e6-96231b3b80d8
directory. These passes are already defined in the IR library, and it
doesn't make any sense to have the headers in Analysis.
Long term, I think there is going to be a much better way to divide
these matters. The dominators code should be fully separated into the
abstract graph algorithm and have that put in Support where it becomes
obvious that evn Clang's CFGBlock's can use it. Then the verifier can
manually construct dominance information from the Support-driven
interface while the Analysis library can provide a pass which both
caches, reconstructs, and supports a nice update API.
But those are very long term, and so I don't want to leave the really
confusing structure until that day arrives.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@199082 91177308-0d34-0410-b5e6-96231b3b80d8
name to match the source file which I got earlier. Update the include
sites. Also modernize the comments in the header to use the more
recommended doxygen style.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@199041 91177308-0d34-0410-b5e6-96231b3b80d8
mode that can be used to debug the execution of everything.
No support for analyses here, that will come later. This already helps
show parts of the opt commandline integration that isn't working. Tests
of that will start using it as the bugs are fixed.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@199004 91177308-0d34-0410-b5e6-96231b3b80d8
are part of the core IR library in order to support dumping and other
basic functionality.
Rename the 'Assembly' include directory to 'AsmParser' to match the
library name and the only functionality left their -- printing has been
in the core IR library for quite some time.
Update all of the #includes to match.
All of this started because I wanted to have the layering in good shape
before I started adding support for printing LLVM IR using the new pass
infrastructure, and commandline support for the new pass infrastructure.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@198688 91177308-0d34-0410-b5e6-96231b3b80d8
instructions. I needed this for a quick experiment I was making, and
while I've no idea if that will ever get committed, I didn't want to
throw away the pattern match code and for anyone else to have to write
it again. I've added unittests to make sure this works correctly.
In fun news, this also uncovered the IRBuilder bug. Doh!
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@198541 91177308-0d34-0410-b5e6-96231b3b80d8
failed to correctly propagate the NUW and NSW flags to the constant
folder for two instructions. I've added a unittest to cover flag
propagation for the rest of the instructions and constant expressions.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@198538 91177308-0d34-0410-b5e6-96231b3b80d8
basic block to hold instructions, and managing all of their lifetimes in
a fixture. This makes it easy to sink the expectations into the test
cases themselves which also makes things a bit more explicit and clearer
IMO.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@198532 91177308-0d34-0410-b5e6-96231b3b80d8