This was previously returning int. However there are no negative opcode
numbers and more importantly this was needlessly different from
MCInstrDesc::getOpcode() (which even is the value returned here) and
SDValue::getOpcode()/SDNode::getOpcode().
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@237611 91177308-0d34-0410-b5e6-96231b3b80d8
This adds new SDNodes for signed/unsigned min/max. These nodes are built from
select/icmp pairs matched at SDAGBuilder stage.
This patch adds the nodes, as well as legalization support and sets them to
be "expand" for all targets.
NFC for now; this will be tested when I switch AArch64 to using these new
nodes.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@237423 91177308-0d34-0410-b5e6-96231b3b80d8
to use the information in the module rather than TargetOptions.
We've had and clang has used the use-soft-float attribute for some
time now so have the backends set a subtarget feature based on
a particular function now that subtargets are created based on
functions and function attributes.
For the one middle end soft float check go ahead and create
an overloadable TargetLowering::useSoftFloat function that
just checks the TargetSubtargetInfo in all cases.
Also remove the command line option that hard codes whether or
not soft-float is set by using the attribute for all of the
target specific test cases - for the generic just go ahead and
add the attribute in the one case that showed up.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@237079 91177308-0d34-0410-b5e6-96231b3b80d8
This patch introduces a new pass that computes the safe point to insert the
prologue and epilogue of the function.
The interest is to find safe points that are cheaper than the entry and exits
blocks.
As an example and to avoid regressions to be introduce, this patch also
implements the required bits to enable the shrink-wrapping pass for AArch64.
** Context **
Currently we insert the prologue and epilogue of the method/function in the
entry and exits blocks. Although this is correct, we can do a better job when
those are not immediately required and insert them at less frequently executed
places.
The job of the shrink-wrapping pass is to identify such places.
** Motivating example **
Let us consider the following function that perform a call only in one branch of
a if:
define i32 @f(i32 %a, i32 %b) {
%tmp = alloca i32, align 4
%tmp2 = icmp slt i32 %a, %b
br i1 %tmp2, label %true, label %false
true:
store i32 %a, i32* %tmp, align 4
%tmp4 = call i32 @doSomething(i32 0, i32* %tmp)
br label %false
false:
%tmp.0 = phi i32 [ %tmp4, %true ], [ %a, %0 ]
ret i32 %tmp.0
}
On AArch64 this code generates (removing the cfi directives to ease
readabilities):
_f: ; @f
; BB#0:
stp x29, x30, [sp, #-16]!
mov x29, sp
sub sp, sp, #16 ; =16
cmp w0, w1
b.ge LBB0_2
; BB#1: ; %true
stur w0, [x29, #-4]
sub x1, x29, #4 ; =4
mov w0, wzr
bl _doSomething
LBB0_2: ; %false
mov sp, x29
ldp x29, x30, [sp], #16
ret
With shrink-wrapping we could generate:
_f: ; @f
; BB#0:
cmp w0, w1
b.ge LBB0_2
; BB#1: ; %true
stp x29, x30, [sp, #-16]!
mov x29, sp
sub sp, sp, #16 ; =16
stur w0, [x29, #-4]
sub x1, x29, #4 ; =4
mov w0, wzr
bl _doSomething
add sp, x29, #16 ; =16
ldp x29, x30, [sp], #16
LBB0_2: ; %false
ret
Therefore, we would pay the overhead of setting up/destroying the frame only if
we actually do the call.
** Proposed Solution **
This patch introduces a new machine pass that perform the shrink-wrapping
analysis (See the comments at the beginning of ShrinkWrap.cpp for more details).
It then stores the safe save and restore point into the MachineFrameInfo
attached to the MachineFunction.
This information is then used by the PrologEpilogInserter (PEI) to place the
related code at the right place. This pass runs right before the PEI.
Unlike the original paper of Chow from PLDI’88, this implementation of
shrink-wrapping does not use expensive data-flow analysis and does not need hack
to properly avoid frequently executed point. Instead, it relies on dominance and
loop properties.
The pass is off by default and each target can opt-in by setting the
EnableShrinkWrap boolean to true in their derived class of TargetPassConfig.
This setting can also be overwritten on the command line by using
-enable-shrink-wrap.
Before you try out the pass for your target, make sure you properly fix your
emitProlog/emitEpilog/adjustForXXX method to cope with basic blocks that are not
necessarily the entry block.
** Design Decisions **
1. ShrinkWrap is its own pass right now. It could frankly be merged into PEI but
for debugging and clarity I thought it was best to have its own file.
2. Right now, we only support one save point and one restore point. At some
point we can expand this to several save point and restore point, the impacted
component would then be:
- The pass itself: New algorithm needed.
- MachineFrameInfo: Hold a list or set of Save/Restore point instead of one
pointer.
- PEI: Should loop over the save point and restore point.
Anyhow, at least for this first iteration, I do not believe this is interesting
to support the complex cases. We should revisit that when we motivating
examples.
Differential Revision: http://reviews.llvm.org/D9210
<rdar://problem/3201744>
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@236507 91177308-0d34-0410-b5e6-96231b3b80d8
This should make it clear under which narrow circumstances implicit
physreg uses are okay when rematerializing and prevent people from
accidentally allowing too much when overriding
isReallyTriviallyReMaterializable() even with the weaker assert in the
RegisterCoalescer.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@235679 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
This patch adds legalization support to operate on FP16 as a load/store type
and do operations on it as floats.
Tests for ARM are added to test/CodeGen/ARM/fp16-promote.ll
Reviewers: srhines, t.p.northover
Differential Revision: http://reviews.llvm.org/D8755
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@235215 91177308-0d34-0410-b5e6-96231b3b80d8
formatted_raw_ostream is a wrapper over another stream to add column and line
number tracking.
It is used only for asm printing.
This patch moves the its creation down to where we know we are printing
assembly. This has the following advantages:
* Simpler lifetime management: std::unique_ptr
* We don't compute column and line number of object files :-)
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@234535 91177308-0d34-0410-b5e6-96231b3b80d8
Revert "Add classof implementations to the raw_ostream classes."
Revert "Use the cast machinery to remove dummy uses of formatted_raw_ostream."
The underlying issue can be fixed without classof.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@234495 91177308-0d34-0410-b5e6-96231b3b80d8
If we know we are producing an object, we don't need to wrap the stream
in a formatted_raw_ostream anymore.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@234461 91177308-0d34-0410-b5e6-96231b3b80d8
Specify an allocation order with a register class. This is used by register
allocators with a greedy heuristic. This is usefull as it is sometimes
beneficial to color more constrained classes first.
Differential Revision: http://reviews.llvm.org/D8626
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@233743 91177308-0d34-0410-b5e6-96231b3b80d8
per-function subtarget.
Currently, code-gen passes the default or generic subtarget to the constructors
of MCInstPrinter subclasses (see LLVMTargetMachine::addPassesToEmitFile), which
enables some targets (AArch64, ARM, and X86) to change their instprinter's
behavior based on the subtarget feature bits. Since the backend can now use
different subtargets for each function, instprinter has to be changed to use the
per-function subtarget rather than the default subtarget.
This patch takes the first step towards enabling instprinter to change its
behavior based on the per-function subtarget. It adds a bit "PassSubtarget" to
AsmWriter which tells table-gen to pass a reference to MCSubtargetInfo to the
various print methods table-gen auto-generates.
I will follow up with changes to instprinters of AArch64, ARM, and X86.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@233411 91177308-0d34-0410-b5e6-96231b3b80d8
Fixing sign extension in makeLibCall for MIPS64. In MIPS64 architecture all
32 bit arguments (int, unsigned int, float 32 (soft float)) must be sign
extended. This fixes test "MultiSource/Applications/oggenc/".
Patch by Strahinja Petrovic.
Differential Revision: http://reviews.llvm.org/D7791
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@232943 91177308-0d34-0410-b5e6-96231b3b80d8
TargetMachine::getSubtargetImpl routines.
This keeps the target independent code free of bare subtarget
calls while the remainder of the backends are migrated, or not
if they don't wish to support per-function subtargets as would
be needed for function multiversioning or LTO of disparate
cpu subarchitecture types, e.g.
clang -msse4.2 -c foo.c -emit-llvm -o foo.bc
clang -c bar.c -emit-llvm -o bar.bc
llvm-link foo.bc bar.bc -o baz.bc
llc baz.bc
and get appropriate code for what the command lines requested.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@232885 91177308-0d34-0410-b5e6-96231b3b80d8
LocalStackSlotPass assumes that isFrameOffsetLegal doesn't change its
answer when the base register changes. Unfortunately this isn't true
in thumb1, where SP-based loads allow a larger offset than
non-SP-based loads, and this causes the base register reuse code to
generate instructions that are unencodable, causing an assertion
failure.
Solve this by adding a BaseReg parameter to isFrameOffsetLegal, which
ARMBaseRegisterInfo can then make use of to give the correct answer.
Differential Revision: http://reviews.llvm.org/D8419
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@232825 91177308-0d34-0410-b5e6-96231b3b80d8
This enables us to remove calls to the subtarget from the TargetMachine
and with a small hack for backends that require global subtarget
information for module level code generation, e.g. mips abi flags, as
mentioned in a fixme in the code.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@232776 91177308-0d34-0410-b5e6-96231b3b80d8
Some subregisters are only to indicate different access sizes, while not
providing any way to actually divide the register up into multiple
disjunct parts. Avoid tracking subregister liveness in these cases as it
is not beneficial.
Differential Revision: http://reviews.llvm.org/D8429
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@232695 91177308-0d34-0410-b5e6-96231b3b80d8
Visual C++ 2013 complains "warning C4138: '*/' found outside of comment"
about the code
CallInst */*CI*/
but compiles OK. clang-formatting these lines adds an extra space and
makes Visual C++ satisfied.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@232630 91177308-0d34-0410-b5e6-96231b3b80d8
Memcpy, and other memory intrinsics, typically tries to use LDM/STM if
the source and target addresses are 4-byte aligned. In CodeGenPrepare
look for calls to memory intrinsics and, if the object is on the
stack, 4-byte align it if it's large enough that we expect that memcpy
would want to use LDM/STM to copy it.
Differential Revision: http://reviews.llvm.org/D7908
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@232627 91177308-0d34-0410-b5e6-96231b3b80d8
COFF COMDATs (for selection kinds other than 'select any') require at
least one non-section symbol in the symbol table.
Satisfy this by morally enhancing the linkage from private to internal.
Differential Revision: http://reviews.llvm.org/D8394
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@232570 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
COFF COMDATs (for selection kinds other than 'select any') require at
least one non-section symbol in the symbol table.
Satisfy this by morally enhancing the linkage from private to internal.
Reviewers: rafael
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D8374
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@232539 91177308-0d34-0410-b5e6-96231b3b80d8
It's not completely clear why 'i' has historically been treated as a memory
constraint. According to the documentation, it represents a constant immediate.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@232470 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
This is instead of doing this in target independent code and is the last
non-functional change before targets begin to distinguish between
different memory constraints when selecting code for the ISD::INLINEASM
node.
Next, each target will individually move away from the idea that all
memory constraints behave like 'm'.
Subscribers: jholewinski, llvm-commits
Differential Revision: http://reviews.llvm.org/D8173
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@232373 91177308-0d34-0410-b5e6-96231b3b80d8
The operand flag word for ISD::INLINEASM nodes now contains a 15-bit
memory constraint ID when the operand kind is Kind_Mem. This constraint
ID is a numeric equivalent to the constraint code string and is converted
with a target specific hook in TargetLowering.
This patch maps all memory constraints to InlineAsm::Constraint_m so there
is no functional change at this point. It just proves that using these
previously unused bits in the encoding of the flag word doesn't break
anything.
The next patch will make each target preserve the current mapping of
everything to Constraint_m for itself while changing the target independent
implementation of the hook to return Constraint_Unknown appropriately. Each
target will then be adapted in separate patches to use appropriate
Constraint_* values.
PR22883 was caused the matching operands copying the whole of the operand flags
for the matched operand. This included the constraint id which needed to be
replaced with the operand number. This has been fixed with a conversion
function. Following on from this, matching operands also used the operand
number as the constraint id. This has been fixed by looking up the matched
operand and taking it from there.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@232165 91177308-0d34-0410-b5e6-96231b3b80d8
This (r232027) has caused PR22883; so it seems those bits might be used by
something else after all. Reverting until we can figure out what else to do.
Original commit message:
The operand flag word for ISD::INLINEASM nodes now contains a 15-bit
memory constraint ID when the operand kind is Kind_Mem. This constraint
ID is a numeric equivalent to the constraint code string and is converted
with a target specific hook in TargetLowering.
This patch maps all memory constraints to InlineAsm::Constraint_m so there
is no functional change at this point. It just proves that using these
previously unused bits in the encoding of the flag word doesn't break anything.
The next patch will make each target preserve the current mapping of
everything to Constraint_m for itself while changing the target independent
implementation of the hook to return Constraint_Unknown appropriately. Each
target will then be adapted in separate patches to use appropriate Constraint_*
values.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@232093 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
The operand flag word for ISD::INLINEASM nodes now contains a 15-bit
memory constraint ID when the operand kind is Kind_Mem. This constraint
ID is a numeric equivalent to the constraint code string and is converted
with a target specific hook in TargetLowering.
This patch maps all memory constraints to InlineAsm::Constraint_m so there
is no functional change at this point. It just proves that using these
previously unused bits in the encoding of the flag word doesn't break anything.
The next patch will make each target preserve the current mapping of
everything to Constraint_m for itself while changing the target independent
implementation of the hook to return Constraint_Unknown appropriately. Each
target will then be adapted in separate patches to use appropriate Constraint_*
values.
Reviewers: hfinkel
Reviewed By: hfinkel
Subscribers: hfinkel, jholewinski, llvm-commits
Differential Revision: http://reviews.llvm.org/D8171
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@232027 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
I don't know why every singled backend had to redeclare its own DataLayout.
There was a virtual getDataLayout() on the common base TargetMachine, the
default implementation returned nullptr. It was not clear from this that
we could assume at call site that a DataLayout will be available with
each Target.
Now getDataLayout() is no longer virtual and return a pointer to the
DataLayout member of the common base TargetMachine. I plan to turn it into
a reference in a future patch.
The only backend that didn't have a DataLayout previsouly was the CPPBackend.
It now initializes the default DataLayout. This commit is NFC for all the
other backends.
Test Plan: clang+llvm ninja check-all
Reviewers: echristo
Subscribers: jfb, jholewinski, llvm-commits
Differential Revision: http://reviews.llvm.org/D8243
From: Mehdi Amini <mehdi.amini@apple.com>
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@231987 91177308-0d34-0410-b5e6-96231b3b80d8
that control, individually, all of the disparate things it was
controlling.
At the same time move a FIXME in the Hexagon port to a new
subtarget function that will enable a user of the machine
scheduler to avoid using the source scheduler for pre-RA-scheduling.
The FIXME would have this removed, but involves either testcase
changes or adding -pre-RA-sched=source to a few testcases.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@231980 91177308-0d34-0410-b5e6-96231b3b80d8