Inserting into a DenseMap you're iterating over is not well defined. This is unfortunate since this is well defined on a std::map.
"cleanup per llvm code style standards" bug #2
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@230827 91177308-0d34-0410-b5e6-96231b3b80d8
These tests cover the 'base object' identification and rewritting portion of RewriteStatepointsForGC. These aren't completely exhaustive, but they've proven to be reasonable effective over time at finding regressions.
In the process of porting these tests over, I found my first "cleanup per llvm code style standards" bug. We were relying on the order of iteration when testing the base pointers found for a derived pointer. When we switched from std::set to DenseSet, this stopped being a safe assumption. I'm suspecting I'm going to find more of those. In particular, I'm now really wondering about the main iteration loop for this algorithm. I need to go take a closer look at the assumptions there.
I'm not really happy with the fact these are testing what is essentially debug output (i.e. enabled via command line flags). Suggestions for how to structure this better are very welcome.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@230818 91177308-0d34-0410-b5e6-96231b3b80d8
IRCE can now split the iteration space for loops like:
for (i = n; i >= 0; i--)
a[i + k] = 42; // bounds check on access
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@230618 91177308-0d34-0410-b5e6-96231b3b80d8
Use the IRBuilder helpers for gc.statepoint and gc.result, instead of
coding the construction by hand. Note that the gc.statepoint IRBuilder
handles only CallInst, not InvokeInst; retain that part of hand-coding.
Differential Revision: http://reviews.llvm.org/D7518
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@230591 91177308-0d34-0410-b5e6-96231b3b80d8
This is a follow-on to r227491 which tightens the check for propagating FP
values. If a non-constant value happens to be a zero, we would hit the same
bug as before.
Bug noted and patch suggested by Eli Friedman.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@230564 91177308-0d34-0410-b5e6-96231b3b80d8
This refactors the core functionality of LICM: HoistRegion, SinkRegion and
PromoteAliasSet (renamed to promoteLoopAccessesToScalars) as utility functions
in LoopUtils. This will enable other transformations to make use of them
directly.
Patch by Ashutosh Nema.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@230178 91177308-0d34-0410-b5e6-96231b3b80d8
work with a non-canonical induction variable.
This is currently a non-functional change because we only ever call
computeSafeIterationSpace on a canonical induction variable; but the
generalization will be useful in a later commit.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@230151 91177308-0d34-0410-b5e6-96231b3b80d8
calculations. Semantically non-functional change.
This gets rid of some of the SCEV -> Value -> SCEV round tripping and
the Construct(SMin|SMax)Of and MaybeSimplify helper routines.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@230150 91177308-0d34-0410-b5e6-96231b3b80d8
Previously, this pass ran over every function in the Module if added to the pass order. With this change, it runs only over those with a GC attribute where the GC explicitly opts in. A GC can also choose which of entry safepoint polls, backedge safepoint polls, and call safepoints it wants. I hope to get these exposed as checks on the GCStrategy at some point, but for now, the checks are manual string comparisons.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@230097 91177308-0d34-0410-b5e6-96231b3b80d8
These are internal options. I need to go through, evaluate which are worth keeping and which not. Many of them should probably be renamed as well. Until I have time to do that, we can at least stop poluting the standard opt -help output.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@230088 91177308-0d34-0410-b5e6-96231b3b80d8
This should be the last cleanup on non-llvm preferred data structures. I left one use of std::set in an assertion; DenseSet didn't seem to have a tombstone for CallSite defined. That might be worth fixing, but wasn't worth it for a debug only use.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@230084 91177308-0d34-0410-b5e6-96231b3b80d8
I'd done the work of extracting the typedef in a previous commit, but didn't actually change it. Hopefully this will make any subtle changes easier to isolate.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@230081 91177308-0d34-0410-b5e6-96231b3b80d8
Use llvm_unreachable where appropriate, use SmallVector where easy to do so, introduce typedefs for planned type migrations.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@230068 91177308-0d34-0410-b5e6-96231b3b80d8
The notion of a range of inserted safepoint related code is no longer really applicable. This survived over from an earlier implementation. Just saving the inserted gc.statepoint and working from that is far clearer given the current code structure. Particularly when invokable statepoints get involved.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@230063 91177308-0d34-0410-b5e6-96231b3b80d8
Yet another chapter in the endless story. While this looks like we leave
the loop in a non-canonical state this replicates the logic in
LoopSimplify so it doesn't diverge from the canonical form in any way.
PR21968
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@230058 91177308-0d34-0410-b5e6-96231b3b80d8
When doing style cleanup, I noticed a minor bug in this code. If we have a pointer that we think is unused after a statepoint and thus doesn't need relocation, we store a null pointer into the alloca we're about to promote. This helps turn a mistake in liveness analysis into an easily debuggable crash. It turned out this code had never been updated to handle invoke statepoints.
There's no test for this. Without a bug in liveness, it appears impossible to make this trigger in a way which is visible in the resulting IR. We might store the null, but when promoting the alloca, there will be no uses and thus nothing to test against. Suggestions on how to test are very welcome.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@230047 91177308-0d34-0410-b5e6-96231b3b80d8
Starting to update variable naming and types to match LLVM style. This will be an incremental process to minimize the chance of breakage as I work. Step one, rename member variables to LLVM CamelCase and use llvm's ADT. Much more to come.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@230042 91177308-0d34-0410-b5e6-96231b3b80d8
Before calling Function::getGC to test for enablement, we need to make sure there's actually a GC at all via Function::hasGC. Otherwise, we'd crash on functions without a GC. Thankfully, this only mattered if you manually scheduled the pass, but still, oops. :(
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@230040 91177308-0d34-0410-b5e6-96231b3b80d8
When back merging the changes in 229945 I noticed that I forgot to mark the test cases with the appropriate GC. We want the rewriting to be off by default (even when manually added to the pass order), not on-by default. To keep the current test working, mark them as using the statepoint-example GC and whitelist that GC.
Longer term, we need a better selection mechanism here for both actual usage and testing. As I migrate more tests to the in tree version of this pass, I will probably need to update the enable/disable logic as well.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@229954 91177308-0d34-0410-b5e6-96231b3b80d8
This patch consists of a single pass whose only purpose is to visit previous inserted gc.statepoints which do not have gc.relocates inserted yet, and insert them. This can be used either immediately after IR generation to perform 'early safepoint insertion' or late in the pass order to perform 'late insertion'.
This patch is setting the stage for work to continue in tree. In particular, there are known naming and style violations in the current patch. I'll try to get those resolved over the next week or so. As I touch each area to make style changes, I need to make sure we have adequate testing in place. As part of the cleanup, I will be cleaning up a collection of test cases we have out of tree and submitting them upstream. The tests included in this change are very basic and mostly to provide examples of usage.
The pass has several main subproblems it needs to address:
- First, it has identify any live pointers. In the current code, the use of address spaces to distinguish pointers to GC managed objects is hard coded, but this will become parametrizable in the near future. Note that the current change doesn't actually contain a useful liveness analysis. It was seperated into a followup change as the code wasn't ready to be shared. Instead, the current implementation just considers any dominating def of appropriate pointer type to be live.
- Second, it has to identify base pointers for each live pointer. This is a fairly straight forward data flow algorithm.
- Third, the information in the previous steps is used to actually introduce rewrites. Rather than trying to do this by hand, we simply re-purpose the code behind Mem2Reg to do this for us.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@229945 91177308-0d34-0410-b5e6-96231b3b80d8
This is a function pass that runs the analysis on demand. The analysis
can be initiated by querying the loop access info via LAA::getInfo. It
either returns the cached info or runs the analysis.
Symbolic stride information continues to reside outside of this analysis
pass. We may move it inside later but it's not a priority for me right
now. The idea is that Loop Distribution won't support run-time stride
checking at least initially.
This means that when querying the analysis, symbolic stride information
can be provided optionally. Whether stride information is used can
invalidate the cache entry and rerun the analysis. Note that if the
loop does not have any symbolic stride, the entry should be preserved
across Loop Distribution and LV.
Since currently the only user of the pass is LV, I just check that the
symbolic stride information didn't change when using a cached result.
On the LV side, LoopVectorizationLegality requests the info object
corresponding to the loop from the analysis pass. A large chunk of the
diff is due to LAI becoming a pointer from a reference.
A test will be added as part of the -analyze patch.
Also tested that with AVX, we generate identical assembly output for the
testsuite (including the external testsuite) before and after.
This is part of the patchset that converts LoopAccessAnalysis into an
actual analysis pass.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@229893 91177308-0d34-0410-b5e6-96231b3b80d8
r229622: "[LoopAccesses] Make VectorizerParams global"
r229623: "[LoopAccesses] Stash the report from the analysis rather than emitting it"
r229624: "[LoopAccesses] Cache the result of canVectorizeMemory"
r229626: "[LoopAccesses] Create the analysis pass"
r229628: "[LoopAccesses] Change debug messages from LV to LAA"
r229630: "[LoopAccesses] Add canAnalyzeLoop"
r229631: "[LoopAccesses] Add missing const to APIs in VectorizationReport"
r229632: "[LoopAccesses] Split out LoopAccessReport from VectorizerReport"
r229633: "[LoopAccesses] Add -analyze support"
r229634: "[LoopAccesses] Change LAA:getInfo to return a constant reference"
r229638: "Analysis: fix buildbots"
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@229650 91177308-0d34-0410-b5e6-96231b3b80d8
This is a function pass that runs the analysis on demand. The analysis
can be initiated by querying the loop access info via LAA::getInfo. It
either returns the cached info or runs the analysis.
Symbolic stride information continues to reside outside of this analysis
pass. We may move it inside later but it's not a priority for me right
now. The idea is that Loop Distribution won't support run-time stride
checking at least initially.
This means that when querying the analysis, symbolic stride information
can be provided optionally. Whether stride information is used can
invalidate the cache entry and rerun the analysis. Note that if the
loop does not have any symbolic stride, the entry should be preserved
across Loop Distribution and LV.
Since currently the only user of the pass is LV, I just check that the
symbolic stride information didn't change when using a cached result.
On the LV side, LoopVectorizationLegality requests the info object
corresponding to the loop from the analysis pass. A large chunk of the
diff is due to LAI becoming a pointer from a reference.
A test will be added as part of the -analyze patch.
Also tested that with AVX, we generate identical assembly output for the
testsuite (including the external testsuite) before and after.
This is part of the patchset that converts LoopAccessAnalysis into an
actual analysis pass.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@229626 91177308-0d34-0410-b5e6-96231b3b80d8
When visiting the initial list of "root" instructions (those which must always
be alive), for those that are integer-valued (such as invokes returning an
integer), we mark their bits as (initially) all dead (we might, obviously, find
uses of those bits later, but all bits are assumed dead until proven
otherwise). Don't do so, however, if we're already seen a use of those bits by
another root instruction (such as a store).
Fixes a miscompile of the sanitizer unit tests on x86_64.
Also, add a debug line for visiting the root instructions, and remove a debug
line which tried to print instructions being removed (printing dead
instructions is dangerous, and can sometimes crash).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@229618 91177308-0d34-0410-b5e6-96231b3b80d8
BDCE is a bit-tracking dead code elimination pass. It is based on ADCE (the
"aggressive DCE" pass), with the added capability to track dead bits of integer
valued instructions and remove those instructions when all of the bits are
dead.
Currently, it does not actually do this all-bits-dead removal, but rather
replaces the instruction's uses with a constant zero, and lets instcombine (and
the later run of ADCE) do the rest. Because we essentially get a run of ADCE
"for free" while tracking the dead bits, we also do what ADCE does and removes
actually-dead instructions as well (this includes instructions newly trivially
dead because all bits were dead, but not all such instructions can be removed).
The motivation for this is a case like:
int __attribute__((const)) foo(int i);
int bar(int x) {
x |= (4 & foo(5));
x |= (8 & foo(3));
x |= (16 & foo(2));
x |= (32 & foo(1));
x |= (64 & foo(0));
x |= (128& foo(4));
return x >> 4;
}
As it turns out, if you order the bit-field insertions so that all of the dead
ones come last, then instcombine will remove them. However, if you pick some
other order (such as the one above), the fact that some of the calls to foo()
are useless is not locally obvious, and we don't remove them (without this
pass).
I did a quick compile-time overhead check using sqlite from the test suite
(Release+Asserts). BDCE took ~0.4% of the compilation time (making it about
twice as expensive as ADCE).
I've not looked at why yet, but we eliminate instructions due to having
all-dead bits in:
External/SPEC/CFP2006/447.dealII/447.dealII
External/SPEC/CINT2006/400.perlbench/400.perlbench
External/SPEC/CINT2006/403.gcc/403.gcc
MultiSource/Applications/ClamAV/clamscan
MultiSource/Benchmarks/7zip/7zip-benchmark
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@229462 91177308-0d34-0410-b5e6-96231b3b80d8
To be consistent with what clang-format does, don't add extra indentation
inside an anonymous namespace. NFC.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@229412 91177308-0d34-0410-b5e6-96231b3b80d8
We won't find a root with index zero in any loop that we are able to reroll.
However, we may find one in a non-rerollable loop, so bail gracefully instead
of failing hard.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@229406 91177308-0d34-0410-b5e6-96231b3b80d8
If a PHI has no users, don't crash; bail gracefully. This shouldn't
happen often, but we can make no guarantees that previous passes didn't leave
dead code around.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@229405 91177308-0d34-0410-b5e6-96231b3b80d8