collectLineCounts() should only organize the output data. This is done in
anticipation of subsequent changes which will pass in GCNO and GCDA filenames
into the print function where it is printed similar to the gcov output.
Patch by Yuchen Wu!
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@193134 91177308-0d34-0410-b5e6-96231b3b80d8
There are several other tag types that need similar handling but to
ensure test coverage they'll be coming incrementally.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@193126 91177308-0d34-0410-b5e6-96231b3b80d8
This uses a map, keeping the type DIE numbering separate from the DIEs
themselves - alternatively we could do things the way GCC does if we
want to add an integer to the DIE type to record the numbering there.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@193105 91177308-0d34-0410-b5e6-96231b3b80d8
The test before wasn't successfully testing this
since it was missing the datalayout piece to change
the size of the second address space.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@193102 91177308-0d34-0410-b5e6-96231b3b80d8
the instruction defenitions and ISEL reflect this.
Prior to this patch these instructions took an i32i8imm, and the high bits were
dropped during encoding. This led to incorrect behavior for shifts by
immediates higher than 255. This patch fixes that issue by detecting large
immediate shifts and returning constant zero (for logical shifts) or capping
the shift amount at an encodable value (for arithmetic shifts).
Fixes <rdar://problem/14968098>
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@193096 91177308-0d34-0410-b5e6-96231b3b80d8
This allows various variables to be more self-documenting and easier to
debug by being of specific types without overlapping enum values.
Precommit review by Eric Christopher.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@193091 91177308-0d34-0410-b5e6-96231b3b80d8
When a linkonce_odr value that is on the dso list is not unnamed_addr
we can still look to see if anything is actually using its address. If
not, it is safe to hide it.
This patch implements that by moving GlobalStatus to Transforms/Utils
and using it in Internalize.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@193090 91177308-0d34-0410-b5e6-96231b3b80d8
Found while adding type safety to the various DWARF enumerations (form,
attribute, tag, etc) that caused Clang to warn on an incompletely
covered switch. Converting the comment to a default/unreachable
uncovered this case of an unsupported form encoding. Seems we were
skipping fission strings entirely.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@193089 91177308-0d34-0410-b5e6-96231b3b80d8
These instructions are logically related as they allow read/write of MSA control registers.
Currently MSA control registers are emitted by number but hopefully that will change as soon
as GAS starts accepting them by name as that would make the assembly easier to read.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@193078 91177308-0d34-0410-b5e6-96231b3b80d8
The second parameter of the SLD intrinsic is the number of columns (GPR) to
slide left the source array.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@193076 91177308-0d34-0410-b5e6-96231b3b80d8
A landing pad can be jumped to only by the unwind edge of an invoke
instruction. If we eliminate a partially redundant load in a landing pad, it
will create a basic block that violates this constraint. It then leads to other
problems down the line if it tries to merge that basic block with the landing
pad. Avoid this by not eliminating the load in a landing pad.
PR17621
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@193064 91177308-0d34-0410-b5e6-96231b3b80d8
One optimization simplify-cfg performs is the converting of switches to
lookup tables if the switch has > 4 cases. This is done by:
1. Finding the max/min case value and calculating the switch case range.
2. Create a lookup table basic block.
3. Perform a check in the switch's BB to see if the input value is in
the switch's case range. If the input value satisfies said predicate
branch to the lookup table BB, otherwise branch to the switch's default
destination BB using the default value as the result.
The conditional check consists of subtracting the min case value of the
table from any input iN value and then ensuring that said value is
unsigned less than the size of the lookup table represented as an iN
value.
If the lookup table is a covered lookup table, the size of the table will be N
which is 0 as an iN value. Thus the comparison will be an `icmp ult` of an iN
value against 0 which is always false yielding the incorrect result.
This patch fixes this problem by recognizing if we have a covered lookup table
and if we do, unconditionally jumps to the lookup table BB since the covering
property of the lookup table implies no input values could not be handled by
said BB.
rdar://15268442
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@193045 91177308-0d34-0410-b5e6-96231b3b80d8
This ensures that the prefix data is treated as part of the function for
the purpose of debug info. This provides a better debugging experience,
among other things by allowing a debug info client to correctly look up
a function in debug info given a function pointer.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@193042 91177308-0d34-0410-b5e6-96231b3b80d8
If the predecessor's being spliced into a landing pad, then we need the PHIs to
come first and the rest of the predecessor's code to come *after* the landing
pad instruction.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@193035 91177308-0d34-0410-b5e6-96231b3b80d8
SCEV currently fails to compute loop counts for nonunit stride
loops. This comes up frequently. It prevents loop optimization and
forces vectorization to insert extra loop checks.
For example:
void foo(int n, int *x) {
for (int i = 0; i < n; i += 3) {
x[i] = i;
x[i+1] = i+1;
x[i+2] = i+2;
}
}
We need to properly handle the case in which limit > INT_MAX-stride. In
the above case: n > INT_MAX-3. In this case the loop counter will step
beyond the limit and overflow at the same time. However, knowing that
signed integer overlow in undefined, we can assume the loop test
behavior is arbitrary after overflow. This obeys both C undefined
behavior rules, and the more strict LLVM poison value rules.
I'm finally fixing this in response to Hal Finkel's persistence.
The most probable reason that we never optimized this before is that
we were being careful to handle case where the developer expected a
side-effect free infinite loop relying on overflow:
for (int i = 0; i < n; i += s) {
++j;
}
return j;
If INT_MAX+1 is a multiple of s and n > INT_MAX-s, then we might
expect an infinite loop. However there are plenty of ways to achieve
this effect without relying on undefined behavior of signed overflow.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@193015 91177308-0d34-0410-b5e6-96231b3b80d8