The <undef> flag says that a MachineOperand doesn't read its register,
or doesn't depend on the previous value of its register.
A full register def never depends on the previous register value. A
partial register def may depend on the previous value if it is intended
to update part of a register.
For example:
%vreg10:dsub_0<def,undef> = COPY %vreg1
%vreg10:dsub_1<def> = COPY %vreg2
The first copy instruction defines the full %vreg10 register with the
bits not covered by dsub_0 defined as <undef>. It is not considered a
read of %vreg10.
The second copy modifies part of %vreg10 while preserving the rest. It
has an implicit read of %vreg10.
This patch adds a MachineOperand::readsReg() method to determine if an
operand reads its register.
Previously, this was modelled by adding a full-register <imp-def>
operand to the instruction. This approach makes it possible to
determine directly from a MachineOperand if it reads its register. No
scanning of MI operands is required.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@141124 91177308-0d34-0410-b5e6-96231b3b80d8
This intrinsic is used to pass the index of the function context to the back-end
for further processing. The back-end is in charge of filling in the rest of the
entries.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@140676 91177308-0d34-0410-b5e6-96231b3b80d8
This also enables domain swizzling for AVX code which required a few
trivial test changes.
The pass will be moved to lib/CodeGen shortly.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@140659 91177308-0d34-0410-b5e6-96231b3b80d8
The function will refuse to use a register class with fewer registers
than MinNumRegs. This can be used by clients to avoid accidentally
increase register pressure too much.
The default value of MinNumRegs=0 doesn't affect how constrainRegClass()
works.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@140339 91177308-0d34-0410-b5e6-96231b3b80d8
The getPrevIndex() function moves to the same slot in the previous
instruction. For getVNInfoBefore(), we just need the previous slot in
the same instruction.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@139793 91177308-0d34-0410-b5e6-96231b3b80d8
There is only one legitimate use remaining, in addIntervalsForSpills().
All other calls to hasPHIKill() are only used to update PHIKill flags.
The addIntervalsForSpills() function is part of the old spilling
framework, only used by linearscan.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@139783 91177308-0d34-0410-b5e6-96231b3b80d8
It is conservatively correct to keep the hasPHIKill flags, even after
deleting PHI-defs.
The calculation can be very expensive after taildup has created a
quadratic number of indirectbr edges in the CFG, and the hasPHIKill flag
isn't used for anything after RenumberValues().
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@139780 91177308-0d34-0410-b5e6-96231b3b80d8
An improper SlotIndex->VNInfo lookup was leading to unsafe copy removal.
Fixes PR10920 401.bzip2 miscompile with no IV rewrite.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@139765 91177308-0d34-0410-b5e6-96231b3b80d8
Three out of four clients prefer this interface which is consistent with
extendIntervalEndTo() and LiveRangeCalc::extend().
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@139604 91177308-0d34-0410-b5e6-96231b3b80d8
(The fix for the related failures on x86 is going to be nastier because we actually need Acquire memoperands attached to the atomic load instrs, etc.)
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@139221 91177308-0d34-0410-b5e6-96231b3b80d8
with a vector condition); such selects become VSELECT codegen nodes.
This patch also removes VSETCC codegen nodes, unifying them with SETCC
nodes (codegen was actually often using SETCC for vector SETCC already).
This ensures that various DAG combiner optimizations kick in for vector
comparisons. Passes dragonegg bootstrap with no testsuite regressions
(nightly testsuite as well as "make check-all"). Patch mostly by
Nadav Rotem.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@139159 91177308-0d34-0410-b5e6-96231b3b80d8
init.trampoline and adjust.trampoline intrinsics, into two intrinsics
like in GCC. While having one combined intrinsic is tempting, it is
not natural because typically the trampoline initialization needs to
be done in one function, and the result of adjust trampoline is needed
in a different (nested) function. To get around this llvm-gcc hacks the
nested function lowering code to insert an additional parent variable
holding the adjust.trampoline result that can be accessed from the child
function. Dragonegg doesn't have the luxury of tweaking GCC code, so it
stored the result of adjust.trampoline in the memory GCC set aside for
the trampoline itself (this is always available in the child function),
and set up some new memory (using an alloca) to hold the trampoline.
Unfortunately this breaks Go which allocates trampoline memory on the
heap and wants to use it even after the parent has exited (!). Rather
than doing even more hacks to get Go working, it seemed best to just use
two intrinsics like in GCC. Patch mostly by Sanjoy Das.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@139140 91177308-0d34-0410-b5e6-96231b3b80d8
The landingpad instruction is lowered into the EXCEPTIONADDR and EHSELECTION
SDNodes. The information from the landingpad instruction is harvested by the
'AddLandingPadInfo' function. The new EH uses the current EH scheme in the
back-end. This will change once we switch over to the new scheme. (Reviewed by
Jakob!)
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@137880 91177308-0d34-0410-b5e6-96231b3b80d8
This function doesn't have anything to do with spill weights, and MRI
already has functions for manipulating the register class of a virtual
register.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@137123 91177308-0d34-0410-b5e6-96231b3b80d8
This flag is true from isel to register allocation when the machine
function is required to be in SSA form. The TwoAddressInstructionPass
and PHIElimination passes clear the flag.
The SSA flag wil be used by the machine code verifier to check for SSA
form, and eventually an assertion can enforce it in +Asserts builds.
This will catch the common target error of creating machine code with
multiple defs of a virtual register.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@136532 91177308-0d34-0410-b5e6-96231b3b80d8
working on x86 (at least for trivial testcases); other architectures will
need more work so that they actually emit the appropriate instructions for
orderings stricter than 'monotonic'. (As far as I can tell, the ARM, PPC,
Mips, and Alpha backends need such changes.)
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@136457 91177308-0d34-0410-b5e6-96231b3b80d8
AddLandingPadInfo takes a landingpad instruction and grabs all of the
information from it that it needs for EH table generation.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@136429 91177308-0d34-0410-b5e6-96231b3b80d8
There is still a bit more refactoring left to do in Targets. But we are now very
close to fixing all the layering issues in MC.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@135611 91177308-0d34-0410-b5e6-96231b3b80d8
TargetLoweringObjectFileImpl down to MCObjectFileInfo.
TargetAsmInfo is done to one last method. It's *almost* gone!
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@135569 91177308-0d34-0410-b5e6-96231b3b80d8