If the cmp is in a different basic block, then it is possible that not all
operands of that compare have defined registers. This can happen when one of
the operands to the cmp is a load and the load gets folded into the cmp. In
this case FastISel will skip the load instruction and the vreg is never
defined.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@211730 91177308-0d34-0410-b5e6-96231b3b80d8
This patch teaches method 'LowerVECTOR_SHUFFLE' to give higher precedence to
the check for 'isBlendMask'; the idea is that, when possible, we should firstly
check if a shuffle performs a blend, and in case, try to lower it into a BLENDI
instead of selecting a SHUFP or (worse) a VPERM2X128.
In general:
- AVX VBLENDPS/D always have better latency and throughput than VPERM2F128;
- BLENDPS/D instructions tend to always have better 'reciprocal throughput'
than the equivalent SHUFPS/D;
- Both BLENDPS/D and SHUFPS/D are often decoded into the same number of
m-ops; however, a m-op obtained from a BLENDPS/D can be scheduled to more
than one execution port.
This patch:
- Moves the check for 'isBlendMask' immediately before the check for
'isSHUFPMask' within method 'LowerVECTOR_SHUFFLE';
- Updates existing tests for sse/avx shuffle/blend instructions to verify
that we select (v)blendps/d when possible (instead of (v)shufps/d or
vperm2f128).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@211720 91177308-0d34-0410-b5e6-96231b3b80d8
[LLVM part]
These patches rename the loop unrolling and loop vectorizer metadata
such that they have a common 'llvm.loop.' prefix. Metadata name
changes:
llvm.vectorizer.* => llvm.loop.vectorizer.*
llvm.loopunroll.* => llvm.loop.unroll.*
This was a suggestion from an earlier review
(http://reviews.llvm.org/D4090) which added the loop unrolling
metadata.
Patch by Mark Heffernan.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@211710 91177308-0d34-0410-b5e6-96231b3b80d8
--
This patch enables LLVM to emit Win64-native unwind info rather than
DWARF CFI. It handles all corner cases (I hope), including stack
realignment.
Because the unwind info is not flexible enough to describe stack frames
with a gap of unknown size in the middle, such as the one caused by
stack realignment, I modified register spilling code to place all spills
into the fixed frame slots, so that they can be accessed relative to the
frame pointer.
Patch by Vadim Chugunov!
Reviewed By: rnk
Differential Revision: http://reviews.llvm.org/D4081
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@211691 91177308-0d34-0410-b5e6-96231b3b80d8
This patch teaches the backend how to combine a build_vector that implements
an 'addsub' between packed float vectors into a sequence of vector add
and vector sub followed by a VSELECT.
The new VSELECT is expected to be lowered into a BLENDI.
At ISel stage, the sequence 'vector add + vector sub + BLENDI' is
pattern-matched against ISel patterns added at r211427 to select
'addsub' instructions.
Added three more ISel patterns for ADDSUB.
Added test sse3-avx-addsub-2.ll to verify that we correctly emit 'addsub'
instructions.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@211679 91177308-0d34-0410-b5e6-96231b3b80d8
The method was empty in the null streamer but I mistakenly replaced it with
the aborting one in MCStreamer.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@211666 91177308-0d34-0410-b5e6-96231b3b80d8
Optimize the codegen of select and branch instructions to directly use the
EFLAGS from the {s|u}{add|sub|mul}.with.overflow intrinsics.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@211645 91177308-0d34-0410-b5e6-96231b3b80d8
In assembly the expression a=b is parsed as an assignment, so it should be
printed as one.
This remove a truly horrible hack for producing a label with "a=.". It would
be used by codegen but would never be reached by the asm parser. Sorry I
missed this when it was first committed.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@211639 91177308-0d34-0410-b5e6-96231b3b80d8
R600 was using a clamped version of rsq, but SI was not. Add a
new rsq_clamped intrinsic and use them consistently.
It's unclear to me from the documentation what behavior
the R600 instructions have, so I assume they have the legacy behavior
described by the SI documents. For R600, use RECIPSQRT_IEEE
for both llvm.AMDGPU.rsq.legacy and llvm.AMDGPU.rsq. R600 also
has RECIPSQRT_FF, which I'm not sure how it fits in here.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@211637 91177308-0d34-0410-b5e6-96231b3b80d8
Most of this is just tests that were silently succeeding in spite of
schema changes I made over a year ago. Cleaning them up as they lead to
failures in a change I'm working on/will come soon.
test/DebugInfo/2010-01-19-DbgScope.ll was removed as it tested miscoping
where a DebugLoc described a location not in the current function. The
test case doesn't describe why this is a valid situation and should be
supported, so I'm removing it and shortly going to commit changes that
make this firmly unsupported/assert-fail.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@211628 91177308-0d34-0410-b5e6-96231b3b80d8
PR20071 identifies a problem in PowerPC's fast-isel implementation for
floating-point conversion to integer. The fctiduz instruction was added in
Power ISA 2.06 (i.e., Power7 and later). However, this instruction is being
generated regardless of which 64-bit PowerPC target is selected.
The intent is for fast-isel to punt to DAG selection when this instruction is
not available. This patch implements that change. For testing purposes, the
existing fast-isel-conversion.ll test adds a RUN line for -mcpu=970 and tests
for the expected code generation. Additionally, the existing test
fast-isel-conversion-p5.ll was found to be incorrectly expecting the
unavailable instruction to be generated. I've removed these test variants
since we have adequate coverage in fast-isel-conversion.ll.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@211627 91177308-0d34-0410-b5e6-96231b3b80d8
"Fix PR20056: Implement pseudo LDR <reg>, =<literal/label> for AArch64"
Missed files are added in this commit.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@211605 91177308-0d34-0410-b5e6-96231b3b80d8
The extends the select lowering coverage by emiting pseudo cmov
instructions. These insturction will be later on lowered to control-flow to
simulate the select.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@211545 91177308-0d34-0410-b5e6-96231b3b80d8
This extends the select lowering to support floating-point selects. The
lowering depends on SSE instructions and that the conditon comes from a
floating-point compare. Under this conditions it is possible to emit an
optimized instruction sequence that doesn't require any branches to
simulate the select.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@211544 91177308-0d34-0410-b5e6-96231b3b80d8
The PPCFrameLowering::determineFrameLayout routine currently ensures
that every function that allocates a stack frame provides space for the
parameter save area (via PPCFrameLowering::getMinCallFrameSize).
This is actually not necessary. There may be functions that never call
another routine but still allocate a frame; those do not require the
parameter save area. In the future, with the ELFv2 ABI, even some
routines that do call other functions do not need to allocate the
parameter save area.
While it is not a bug to allocate the parameter area when it is not
needed, it is better to avoid it to save stack space.
Note that when any particular function call requires the parameter save
area, this space will already have been included by ABI code in the size
the CALLSEQ_START insn is annotated with, and therefore included in the
size returned by MFI->getMaxCallFrameSize().
This means that determineFrameLayout simply does not need to care about
the parameter save area. (It still needs to ensure that every frame
provides the linkage area.) This is implemented by this patch.
Note that this exposed a bug in the new fast-isel code where the parameter
area was *not* included in the CALLSEQ_START size; this is also fixed.
A couple of test cases needed to be adapted for the new (smaller) stack
frame size those tests now see.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@211495 91177308-0d34-0410-b5e6-96231b3b80d8
Current 64-bit SVR4 code seems to have some remnants of Darwin code
in AltiVec argument handing. This had the effect that AltiVec arguments
(or subsequent arguments) were not correctly placed in the parameter area
in some cases.
The correct behaviour with the 64-bit SVR4 ABI is:
- All AltiVec arguments take up space in the parameter area, just like
any other arguments, whether vararg or not.
- They are always 16-byte aligned, skipping a parameter area doubleword
(and the associated GPR, if any), if necessary.
This patch implements the correct behaviour and adds a test case.
(Verified against GCC behaviour via the ABI compat test suite.)
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@211492 91177308-0d34-0410-b5e6-96231b3b80d8
v2: move < %s to the end of the line
space after ;
add v4i32 test
Signed-off-by: Jan Vesely <jan.vesely@rutgers.edu>
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@211476 91177308-0d34-0410-b5e6-96231b3b80d8
We handle this by spilling the whole thing to the stack and doing the
insertion as a store.
PR19492. This happens in real code because the vectorizer creates v2i128 when AVX is enabled.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@211435 91177308-0d34-0410-b5e6-96231b3b80d8
This patch adds ISel patterns to select SSE3/AVX ADDSUB instructions
from a sequence of "vadd + vsub + blend".
Example:
///
typedef float float4 __attribute__((ext_vector_type(4)));
float4 foo(float4 A, float4 B) {
float4 X = A - B;
float4 Y = A + B;
return (float4){X[0], Y[1], X[2], Y[3]};
}
///
Before this patch, (with flag -mcpu=corei7) llc produced the following
assembly sequence:
movaps %xmm0, %xmm2
addps %xmm1, %xmm2
subps %xmm1, %xmm0
blendps $10, %xmm2, %xmm0
With this patch, we now get a single
addsubps %xmm1, %xmm0
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@211427 91177308-0d34-0410-b5e6-96231b3b80d8
This patch enables LLVM to emit Win64-native unwind info rather than
DWARF CFI. It handles all corner cases (I hope), including stack
realignment.
Because the unwind info is not flexible enough to describe stack frames
with a gap of unknown size in the middle, such as the one caused by
stack realignment, I modified register spilling code to place all spills
into the fixed frame slots, so that they can be accessed relative to the
frame pointer.
Patch by Vadim Chugunov!
Reviewed By: rnk
Differential Revision: http://reviews.llvm.org/D4081
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@211399 91177308-0d34-0410-b5e6-96231b3b80d8
When small arguments (structures < 8 bytes or "float") are passed in a
stack slot in the ppc64 SVR4 ABI, they must reside in the least
significant part of that slot. On BE, this means that an offset needs
to be added to the stack address of the parameter, but on LE, the least
significant part of the slot has the same address as the slot itself.
This changes the PowerPC back-end ABI code to only add the small
argument stack slot offset for BE. It also adds test cases to verify
the correct behavior on both BE and LE.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@211368 91177308-0d34-0410-b5e6-96231b3b80d8
Before this change, the backend was unable to fold a build_vector dag
node with UNDEF operands into a single horizontal add/sub.
This patch teaches how to combine a build_vector with UNDEF operands into a
horizontal add/sub when possible. The algorithm conservatively avoids to combine
a build_vector with only a single non-UNDEF operand.
Added test haddsub-undef.ll to verify that we correctly fold horizontal binop
even in the presence of UNDEFs.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@211265 91177308-0d34-0410-b5e6-96231b3b80d8
These will be used for custom lowering and for library
implementations of various math functions, so it's useful
to expose these as builtins.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@211247 91177308-0d34-0410-b5e6-96231b3b80d8
The difference from rint isn't really relevant here,
so treat them as equivalent. OpenCL doesn't have nearbyint,
so this is sort of pointless other than for completeness.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@211229 91177308-0d34-0410-b5e6-96231b3b80d8
This contains all the previous patches + getlod support on top of it.
It doesn't use SDNodes anymore, so it's quite small.
It also adds v16i8 to SReg_128, which is used for the sampler descriptor.
Reviewed-by: Tom Stellard
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@211228 91177308-0d34-0410-b5e6-96231b3b80d8