code generation options from TargetMachine. This will depend
upon Function + TargetSubtargetInfo based code generation at
which point resetTargetOptions and this code can be removed.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@218491 91177308-0d34-0410-b5e6-96231b3b80d8
Add SelectionDAG TableGen definitions for BR_CC so that targets can instruction-select
BR_CC using TableGen pattern matching.
Patch by deadal nix.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@218476 91177308-0d34-0410-b5e6-96231b3b80d8
llvm::format() is somewhat unsafe. The compiler does not check that integer
parameter size matches the %x or %d size and it does not complain when a
StringRef is passed for a %s. And correctly using a StringRef with format() is
ugly because you have to convert it to a std::string then call c_str().
The cases where llvm::format() is useful is controlling how numbers and
strings are printed, especially when you want fixed width output. This
patch adds some new formatting functions to raw_streams to format numbers
and StringRefs in a type safe manner. Some examples:
OS << format_hex(255, 6) => "0x00ff"
OS << format_hex(255, 4) => "0xff"
OS << format_decimal(0, 5) => " 0"
OS << format_decimal(255, 5) => " 255"
OS << right_justify(Str, 5) => " foo"
OS << left_justify(Str, 5) => "foo "
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@218463 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
I originally tried doing this specifically for X86 in the backend in D5091,
but it was rather brittle and generally running too late to be general.
Furthermore, other targets may want to implement similar optimizations.
So I reimplemented it at the IR-level, fitting it into AtomicExpandPass
as it interacts with that pass (which could not be cleanly done before
at the backend level).
This optimization relies on a new target hook, which is only used by X86
for now, as the correctness of the optimization on other targets remains
an open question. If it is found correct on other targets, it should be
trivial to enable for them.
Details of the optimization are discussed in D5091.
Test Plan: make check-all + a new test
Reviewers: jfb
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D5422
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@218455 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
The N32/N64 ABI's require that structs passed in registers are laid out
such that spilling the register with 'sd' places the struct at the lowest
address. For little endian this is trivial but for big-endian it requires
that structs are shifted into the upper bits of the register.
We also require that structs passed in registers have the 'inreg'
attribute for big-endian N32/N64 to work correctly. This is because the
tablegen-erated calling convention implementation only has access to the
lowered form of struct arguments (one or more integers of up to 64-bits
each) and is unable to determine the original type.
Reviewers: vmedic
Reviewed By: vmedic
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D5286
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@218451 91177308-0d34-0410-b5e6-96231b3b80d8
If we have multiple coverage counts for the same segment, we need to
add them up rather than arbitrarily choosing one. This fixes that and
adds a test with template instantiations to exercise it.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@218432 91177308-0d34-0410-b5e6-96231b3b80d8
For biendian targets like ARM and AArch64, it is useful to have the
output of the llvm-dwarfdump and llvm-objdump report the endianness
used when the object files were generated.
Patch by Charlie Turner.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@218408 91177308-0d34-0410-b5e6-96231b3b80d8
This change fixes the ARM and AArch64 relocation visitors in
RelocVisitor. They were unconditionally assuming the object data are
little-endian. Tests have been added to ensure that the
llvm-dwarfdump utility does not crash when processing big-endian
object files.
Patch by Charlie Turner.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@218407 91177308-0d34-0410-b5e6-96231b3b80d8
This change replaces the brittle if/else chain of string comparisons
with a switch statement on the detected target triple, removing the
need for testing arbitrary architecture names returned from
getFileFormatName, whose primary purpose seems to be for display
(user-interface) purposes. The visitor now takes a reference to the
object file, rather than its arbitrary file format name to figure out
whether the file is a 32 or 64-bit object file and what the detected
target triple is.
A set of tests have been added to help show that the refactoring processes
relocations for the same targets as the original code.
Patch by Charlie Turner.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@218406 91177308-0d34-0410-b5e6-96231b3b80d8
This reverts commit faac033f73.
The test depends on all targets to be enabled in llc in order to pass,
and needs to be rewritten/refactored to not have that dependency.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@218393 91177308-0d34-0410-b5e6-96231b3b80d8
For biendian targets like ARM and AArch64, it is useful to have the
output of the llvm-dwarfdump and llvm-objdump report the endianness
used when the object files were generated.
Patch by Charlie Turner.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@218391 91177308-0d34-0410-b5e6-96231b3b80d8
This change fixes the ARM and AArch64 relocation visitors in
RelocVisitor. They were unconditionally assuming the object data are
little-endian. Tests have been added to ensure that the
llvm-dwarfdump utility does not crash when processing big-endian
object files.
Patch by Charlie Turner.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@218389 91177308-0d34-0410-b5e6-96231b3b80d8
This change replaces the brittle if/else chain of string comparisons
with a switch statement on the detected target triple, removing the
need for testing arbitrary architecture names returned from
getFileFormatName, whose primary purpose seems to be for display
(user-interface) purposes. The visitor now takes a reference to the
object file, rather than its arbitrary file format name to figure out
whether the file is a 32 or 64-bit object file and what the detected
target triple is.
A set of tests have been added to help show that the refactoring processes
relocations for the same targets as the original code.
Patch by Charlie Turner.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@218388 91177308-0d34-0410-b5e6-96231b3b80d8
The doFinalization method checks that the LoopToAliasSetMap is
empty. LICM populates that map as it runs through the loop nest,
deleting the entries for child loops as it goes. However, if a child
loop is deleted by another pass (e.g. unrolling) then the loop will
never be deleted from the map because LICM walks the loop nest to
find entries it can delete.
The fix is to delete the loop from the map and free the alias set
when the loop is deleted from the loop nest.
Differential Revision: http://reviews.llvm.org/D5305
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@218387 91177308-0d34-0410-b5e6-96231b3b80d8
- BB duplication may not be desired on targets where there is no or small
branch penalty and code duplication needs restrict control.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@218375 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
This patch makes use of AtomicExpandPass in Power for inserting fences around
atomic as part of an effort to remove fence insertion from SelectionDAGBuilder.
As a big bonus, it lets us use sync 1 (lightweight sync, often used by the mnemonic
lwsync) instead of sync 0 (heavyweight sync) in many cases.
I also added a test, as there was no test for the barriers emitted by the Power
backend for atomic loads and stores.
Test Plan: new test + make check-all
Reviewers: jfb
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D5180
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@218331 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
The goal is to eventually remove all the code related to getInsertFencesForAtomic
in SelectionDAGBuilder as it is wrong (designed for ARM, not really portable, works
mostly by accident because the backends are overly conservative), and repeats the
same logic that goes in emitLeading/TrailingFence.
In this patch, I make AtomicExpandPass insert the fences as it knows better
where to put them. Because this requires getting the fences and not just
passing an IRBuilder around, I had to change the return type of
emitLeading/TrailingFence.
This code only triggers on ARM for now. Because it is earlier in the pipeline
than SelectionDAGBuilder, it triggers and lowers atomic accesses to atomic so
SelectionDAGBuilder does not add barriers anymore on ARM.
If this patch is accepted I plan to implement emitLeading/TrailingFence for all
backends that setInsertFencesForAtomic(true), which will allow both making them
less conservative and simplifying SelectionDAGBuilder once they are all using
this interface.
This should not cause any functionnal change so the existing tests are used
and not modified.
Test Plan: make check-all, benefits from existing tests of atomics on ARM
Reviewers: jfb, t.p.northover
Subscribers: aemerson, llvm-commits
Differential Revision: http://reviews.llvm.org/D5179
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@218329 91177308-0d34-0410-b5e6-96231b3b80d8
This patch removes the old JIT memory manager (which does not provide any
useful functionality now that the old JIT is gone), and migrates the few
remaining clients over to SectionMemoryManager.
http://llvm.org/PR20848
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@218316 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
This fixes a couple of issues. One is ensuring that AOK_Label rewrite
rules have a lower priority than AOK_Skip rules, as AOK_Skip needs to
be able to skip the brackets properly. The other part of the fix ensures
that we don't overwrite Identifier when looking up the identifier, and
that we use the locally available information to generate the AOK_Label
rewrite in ParseIntelIdentifier. Doing that in CreateMemForInlineAsm
would be problematic since the Start location there may point to the
beginning of a bracket expression, and not necessarily the beginning of
an identifier.
This also means that we don't need to carry around the InternlName field,
which helps simplify the code.
Test Plan: This will be tested on the clang side.
Reviewers: rnk
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D5445
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@218270 91177308-0d34-0410-b5e6-96231b3b80d8
As of July 2014, all backends have been updated to implement
AtomicRMWInst::Nand as ~(x & y) (and not as x & ~y, as some did previously).
This was added to the release notes in r212635 (and the LangRef had been
changed), but it seems that we forgot to update the header-file description.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@218236 91177308-0d34-0410-b5e6-96231b3b80d8
The implementation of the callback in clang's Sema will return an
internal name for labels.
Test Plan: Will be tested in clang.
Reviewers: rnk
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D4587
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@218229 91177308-0d34-0410-b5e6-96231b3b80d8
This is purely a plumbing patch. No functional changes intended.
The ultimate goal is to allow targets other than PowerPC (certainly X86 and Aarch64) to turn this:
z = y / sqrt(x)
into:
z = y * rsqrte(x)
using whatever HW magic they can use. See http://llvm.org/bugs/show_bug.cgi?id=20900 .
The first step is to add a target hook for RSQRTE, take the already target-independent code selfishly hoarded by PPC, and put it into DAGCombiner.
Next steps:
The code in DAGCombiner::BuildRSQRTE() should be refactored further; tests that exercise that logic need to be added.
Logic in PPCTargetLowering::BuildRSQRTE() should be hoisted into DAGCombiner.
X86 and AArch64 overrides for TargetLowering.BuildRSQRTE() should be added.
Differential Revision: http://reviews.llvm.org/D5425
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@218219 91177308-0d34-0410-b5e6-96231b3b80d8
This splits the logic for actually looking up coverage information
from the logic that displays it. These were tangled rather thoroughly
so this change is a bit large, but it mostly consists of moving things
around. The coverage lookup logic itself now lives in the library,
rather than being spread between the library and the tool.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@218184 91177308-0d34-0410-b5e6-96231b3b80d8
The heuristic used by DAGCombine to form FMAs checks that the FMUL has only one
use, but this is overly-conservative on some systems. Specifically, if the FMA
and the FADD have the same latency (and the FMA does not compete for resources
with the FMUL any more than the FADD does), there is no need for the
restriction, and furthermore, forming the FMA leaving the FMUL can still allow
for higher overall throughput and decreased critical-path length.
Here we add a new TLI callback, enableAggressiveFMAFusion, false by default, to
elide the hasOneUse check. This is enabled for PowerPC by default, as most
PowerPC systems will benefit.
Patch by Olivier Sallenave, thanks!
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@218120 91177308-0d34-0410-b5e6-96231b3b80d8
With this optimization, we will not always insert zext for values crossing
basic blocks, but insert sext if the users of a value crossing basic block
has preference of sign predicate.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@218101 91177308-0d34-0410-b5e6-96231b3b80d8
This format is simply a regular object file with the bitcode stored in a
section named ".llvmbc", plus any number of other (non-allocated) sections.
One immediate use case for this is to accommodate compilation processes
which expect the object file to contain metadata in non-allocated sections,
such as the ".go_export" section used by some Go compilers [1], although I
imagine that in the future we could consider compiling parts of the module
(such as large non-inlinable functions) directly into the object file to
improve LTO efficiency.
[1] http://golang.org/doc/install/gccgo#Imports
Differential Revision: http://reviews.llvm.org/D4371
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@218078 91177308-0d34-0410-b5e6-96231b3b80d8
shim between the TargetTransformInfo immutable pass and the Subtarget
via the TargetMachine and Function. Migrate a single call from
BasicTargetTransformInfo as an example and provide shims where TargetMachine
begins taking a Function to determine the subtarget.
No functional change.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@218004 91177308-0d34-0410-b5e6-96231b3b80d8
This type isn't owned polymorphically (as demonstrated by making the
dtor protected and everything still compiling) so just address the
warning by protecting the base dtor and making the derived class final.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@217990 91177308-0d34-0410-b5e6-96231b3b80d8