This reverts commit r184602. In an upcoming commit, I will just remove
the disassembler part of the test; it was mostly just a "nifty" thing
marking a milestone but it doesn't test anything that isn't tested
elsewhere.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@184606 91177308-0d34-0410-b5e6-96231b3b80d8
This was causing buildbot failures when build without X86 support.
Is there a way to conditionalize the test on the X86 target being
present?
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@184597 91177308-0d34-0410-b5e6-96231b3b80d8
Previously we unconditionally enforced that section references in
symbols in the YAML had a name that was a section name present in the
object, and linked the references to that section. Now, permit empty
section names (already the default, if the `Section` key is not
provided) to indicate SHN_UNDEF.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@184513 91177308-0d34-0410-b5e6-96231b3b80d8
Instead, just have 3 sub-lists, one for each of
{STB_LOCAL,STB_GLOBAL,STB_WEAK}.
This allows us to be a lot more explicit w.r.t. the symbol ordering in
the object file, because if we allowed explicitly setting the STB_*
`Binding` key for the symbol, then we might have ended up having to
shuffle STB_LOCAL symbols to the front of the list, which is likely to
cause confusion and potential for error.
Also, this new approach is simpler ;)
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@184506 91177308-0d34-0410-b5e6-96231b3b80d8
After this patch, the ELF file produced by
`yaml2obj-elf-symbol-basic.yaml`, when linked and executed on x86_64
(under SysV ABI, obviously; I tested on Linux), produces a working
executable that goes into an infinite loop!
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@184469 91177308-0d34-0410-b5e6-96231b3b80d8
For consistency, change the address in the test case from 0xDEADBEEF to
0xCAFEBABE since 0xCAFEBABE that actually has a 2-byte alignment.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@183962 91177308-0d34-0410-b5e6-96231b3b80d8
The current functionality is extremely basic and a bit rough around the
edges, but it will flesh out in future commits.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@183953 91177308-0d34-0410-b5e6-96231b3b80d8
This test case was a "sanity check"/"breathing" test case at first, but
is really fragile, which impairs changes to yaml2obj.
`test/Object/yaml2obj-elf-bits-endian.test` is much more robust and
serves as an adequate sanity check.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@183811 91177308-0d34-0410-b5e6-96231b3b80d8
Currently, only emitting the ELF header is supported (no sections or
segments).
The ELFYAML code organization is broadly similar to the COFFYAML code.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@183711 91177308-0d34-0410-b5e6-96231b3b80d8
from the LC_DATA_IN_CODE load command. And when disassembling print
the data in code formatted for the kind of data it and not disassemble those
bytes.
I added the format specific functionality to the derived class MachOObjectFile
since these tables only appears in Mach-O object files. This is my first
attempt to modify the libObject stuff so if folks have better suggestions
how to fit this in or suggestions on the implementation please let me know.
rdar://11791371
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@183424 91177308-0d34-0410-b5e6-96231b3b80d8
In ELF (as in MachO), not all relocations point to symbols. Represent this
properly by using a symbol_iterator instead of a SymbolRef. Update llvm-readobj
ELF's dumper to handle relocatios without symbols.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@183284 91177308-0d34-0410-b5e6-96231b3b80d8
For COFF and MachO, sections semantically have relocations that apply to them.
That is not the case on ELF.
In relocatable objects (.o), a section with relocations in ELF has offsets to
another section where the relocations should be applied.
In dynamic objects and executables, relocations don't have an offset, they have
a virtual address. The section sh_info may or may not point to another section,
but that is not actually used for resolving the relocations.
This patch exposes that in the ObjectFile API. It has the following advantages:
* Most (all?) clients can handle this more efficiently. They will normally walk
all relocations, so doing an effort to iterate in a particular order doesn't
save time.
* llvm-readobj now prints relocations in the same way the native readelf does.
* probably most important, relocations that don't point to any section are now
visible. This is the case of relocations in the rela.dyn section. See the
updated relocation-executable.test for example.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@182908 91177308-0d34-0410-b5e6-96231b3b80d8
This is a basic first step towards symbolization of disassembled
instructions. This used to be done using externally provided (C API)
callbacks. This patch introduces:
- the MCSymbolizer class, that mimics the same functions that were used
in the X86 and ARM disassemblers to symbolize immediate operands and
to annotate loads based off PC (for things like c string literals).
- the MCExternalSymbolizer class, which implements the old C API.
- the MCRelocationInfo class, which provides a way for targets to
translate relocations (either object::RelocationRef, or disassembler
C API VariantKinds) to MCExprs.
- the MCObjectSymbolizer class, which does symbolization using what it
finds in an object::ObjectFile. This makes simple symbolization (with
no fancy relocation stuff) work for all object formats!
- x86-64 Mach-O and ELF MCRelocationInfos.
- A basic ARM Mach-O MCRelocationInfo, that provides just enough to
support the C API VariantKinds.
Most of what works in otool (the only user of the old symbolization API
that I know of) for x86-64 symbolic disassembly (-tvV) works, namely:
- symbol references: call _foo; jmp 15 <_foo+50>
- relocations: call _foo-_bar; call _foo-4
- __cf?string: leaq 193(%rip), %rax ## literal pool for "hello"
Stub support is the main missing part (because libObject doesn't know,
among other things, about mach-o indirect symbols).
As for the MCSymbolizer API, instead of relying on the disassemblers
to call the tryAdding* methods, maybe this could be done automagically
using InstrInfo? For instance, even though PC-relative LEAs are used
to get the address of string literals in a typical Mach-O file, a MOV
would be used in an ELF file. And right now, the explicit symbolization
only recognizes PC-relative LEAs. InstrInfo should have already have
most of what is needed to know what to symbolize, so this can
definitely be improved.
I'd also like to remove object::RelocationRef::getValueString (it seems
only used by relocation printing in objdump), as simply printing the
created MCExpr is definitely enough (and cleaner than string concats).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@182625 91177308-0d34-0410-b5e6-96231b3b80d8
There were two problems that made llvm-objdump -r crash:
- for non-scattered relocations, the symbol/section index is actually in the
(aptly named) symbolnum field.
- sections are 1-indexed.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@181843 91177308-0d34-0410-b5e6-96231b3b80d8
It was only implemented for ELF where it collected the Addend, so this
patch also renames it to getRelocationAddend.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@181502 91177308-0d34-0410-b5e6-96231b3b80d8
The alignment is just a byte in the middle of Characteristics, not an
independent flag. Making it an independent field in the yaml
representation makes it more yamlio friendly.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@181243 91177308-0d34-0410-b5e6-96231b3b80d8
Build attribute sections can now be read if they exist via ELFObjectFile, and
the llvm-readobj tool has been extended with an option to dump this information
if requested. Regression tests are also included which exercise these features.
Also update the docs with a fixed ARM ABI link and a new link to the Addenda
which provides the build attributes specification.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@181009 91177308-0d34-0410-b5e6-96231b3b80d8
getRelocationAddress is for dynamic libraries and executables,
getRelocationOffset for relocatable objects.
Mark the getRelocationAddress of COFF and MachO as not implemented yet. Add a
test of ELF's. llvm-readobj -r now prints the same values as readelf -r.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@180259 91177308-0d34-0410-b5e6-96231b3b80d8
Thanks to Evgeniy Stepanov for reporting this.
It might be a good idea to add a command iterator abstraction to MachO.h, but
this fixes the bug for now.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@179848 91177308-0d34-0410-b5e6-96231b3b80d8
It had been dropped during the switch to yaml::IO. Also add a test going
from yaml2obj to llvm-readobj. It can be extended as we add more
fields/formats to yaml2obj.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@178786 91177308-0d34-0410-b5e6-96231b3b80d8