The condition code didn't actually matter for arm "b" instructions,
unlike "bl". It should just use the R_ARM_JUMP24 reloc.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@158722 91177308-0d34-0410-b5e6-96231b3b80d8
For processors with the G5-like instruction-grouping scheme, this helps avoid
early group termination due to a write-after-write dependency within the group.
It should also help on pipelined embedded cores.
On POWER7, over the test suite, this gives an average 0.5% speedup. The largest
speedups are:
SingleSource/Benchmarks/Stanford/Quicksort - 33%
MultiSource/Applications/d/make_dparser - 21%
MultiSource/Benchmarks/FreeBench/analyzer/analyzer - 12%
MultiSource/Benchmarks/MiBench/telecomm-FFT/telecomm-fft - 12%
Largest slowdowns:
SingleSource/Benchmarks/Stanford/Bubblesort - 23%
MultiSource/Benchmarks/Prolangs-C++/city/city - 21%
MultiSource/Benchmarks/BitBench/uuencode/uuencode - 16%
MultiSource/Benchmarks/mediabench/mpeg2/mpeg2dec/mpeg2decode - 13%
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@158719 91177308-0d34-0410-b5e6-96231b3b80d8
TargetLoweringObjectFileELF. Use this to support it on X86. Unlike ARM,
on X86 it is not easy to find out if .init_array should be used or not, so
the decision is made via TargetOptions and defaults to off.
Add a command line option to llc that enables it.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@158692 91177308-0d34-0410-b5e6-96231b3b80d8
Original commit msg:
add the 'alloc' metadata node to represent the size of offset of buffers pointed to by pointers.
This metadata can be attached to any instruction returning a pointer
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@158688 91177308-0d34-0410-b5e6-96231b3b80d8
This patch changes the type used to hold the FU bitset from unsigned to uint64_t.
This will be needed for some upcoming PowerPC itineraries.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@158679 91177308-0d34-0410-b5e6-96231b3b80d8
The NOP, WFE, WFI, SEV and YIELD instructions are all hints w/
a different immediate value in bits [7,0]. Define a generic HINT
instruction and refactor NOP, WFI, WFI, SEV and YIELD to be
assembly aliases of that.
rdar://11600518
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@158674 91177308-0d34-0410-b5e6-96231b3b80d8
when a compile time constant is known. This occurs when implicitly zero
extending function arguments from 16 bits to 32 bits. The 8 bit case doesn't
need to be handled, as the 8 bit constants are encoded directly, thereby
not needing a separate load instruction to form the constant into a register.
<rdar://problem/11481151>
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@158659 91177308-0d34-0410-b5e6-96231b3b80d8
This patch causes problems when both dynamic stack realignment and
dynamic allocas combine in the same function. With this patch, we no
longer build the epilog correctly, and silently restore registers from
the wrong position in the stack.
Thanks to Matt for tracking this down, and getting at least an initial
test case to Chad. I'm going to try to check a variation of that test
case in so we can easily track the fixes required.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@158654 91177308-0d34-0410-b5e6-96231b3b80d8
This cleans up the method used to find trip counts in order to form CTR loops on PPC.
This refactoring allows the pass to find loops which have a constant trip count but also
happen to end with a comparison to zero. This also adds explicit FIXMEs to mark two different
classes of loops that are currently ignored.
In addition, we now search through all potential induction operations instead of just the first.
Also, we check the predicate code on the conditional branch and abort the transformation if the
code is not EQ or NE, and we then make sure that the branch to be transformed matches the
condition register defined by the comparison (multiple possible comparisons will be considered).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@158607 91177308-0d34-0410-b5e6-96231b3b80d8
The present implementation handles only TBAA and FP metadata, discarding everything else.
For debug metadata, the current behavior is maintained (the debug metadata associated with
one of the instructions will be kept, discarding that attached to the other).
This should address PR 13040.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@158606 91177308-0d34-0410-b5e6-96231b3b80d8
Dynamic GEPs created by SROA needed to insert extra "i32 0"
operands to index through structs and arrays to get to the
vector being indexed.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@158590 91177308-0d34-0410-b5e6-96231b3b80d8
the address of it. Found by a checking STL implementation used on
a dragonegg builder. Sorry about this one. =/
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@158582 91177308-0d34-0410-b5e6-96231b3b80d8
This is likely only the tip of the ice berg, but this particular bug
caused any double-free on a glibc system to turn into a deadlock! It is
not generally safe to either allocate or release heap memory from within
the signal handler. The 'pop_back()' in RemoveFilesToRemove was deleting
memory and causing the deadlock. What's worse, eraseFromDisk in PathV1
has lots of allocation and deallocation paths. We even passed 'true' in
a place that would have caused the *signal handler* to try to run the
'system' system call and shell out to 'rm -rf'. That was never going to
work...
This patch switches the file removal to use a vector of strings so that
the exact text needed for the 'unlink' system call can be stored there.
It switches the loop to be a boring indexed loop, and directly calls
unlink without looking at the error. It also works quite hard to ensure
that calling 'c_str()' is safe, by ensuring that the non-signal-handling
code path that manipulates the vector always leaves it in a state where
every element has already had 'c_str()' called at least once.
I dunno exactly how overkill this is, but it fixes the
deadlock-on-double free issue, and seems likely to prevent any other
issues from sneaking up.
Sorry for not having a test case, but I *really* don't know how to test
signal handling code easily....
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@158580 91177308-0d34-0410-b5e6-96231b3b80d8
Calling checkRegMaskInterference(VirtReg) checks if VirtReg crosses any
regmask operands, regardless of the registers they clobber.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@158563 91177308-0d34-0410-b5e6-96231b3b80d8
This patch will optimize abs(x-y)
FROM
sub, movs, rsbmi
TO
subs, rsbmi
For abs, we will use cmp instead of movs. This is necessary because we already
have an existing peephole pass which optimizes away cmp following sub.
rdar: 11633193
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@158551 91177308-0d34-0410-b5e6-96231b3b80d8
For non-address users, Base and Scaled registers are not specially
associated to fit an address mode, so SCEVExpander should apply normal
expansion rules. Otherwise we may sink computation into inner loops
that have already been optimized.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@158537 91177308-0d34-0410-b5e6-96231b3b80d8
linkonce linkage. For example, it is not valid to add unnamed_addr.
This also fixes a crash in g++.dg/opt/static5.C.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@158528 91177308-0d34-0410-b5e6-96231b3b80d8
We only do very limited physreg coalescing now, but we still merge
virtual registers into reserved registers.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@158526 91177308-0d34-0410-b5e6-96231b3b80d8
Patch extracted from a larger one by the PaX team. I added the testcases
and tightened error handling a bit.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@158523 91177308-0d34-0410-b5e6-96231b3b80d8
example degenerate phi nodes and binops that use themselves in unreachable code.
Thanks to Charles Davis for the testcase that uncovered this can of worms.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@158508 91177308-0d34-0410-b5e6-96231b3b80d8