instead of the instruction. I've left a forwarding wrapper for the
instruction so users with the instruction don't need to create
a GEPOperator themselves.
This lets us remove the copy of this code in instsimplify.
I've looked at most of the other copies of similar code, and this is the
only one I've found that is actually exactly the same. The one in
InlineCost is very close, but it requires re-mapping non-constant
indices through the cost analysis value simplification map. I could add
direct support for this to the generic routine, but it seems overly
specific.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@169853 91177308-0d34-0410-b5e6-96231b3b80d8
the GEP instruction class.
This is part of the continued refactoring and cleaning of the
infrastructure used by SROA. This particular operation is also done in
a few other places which I'll try to refactor to share this
implementation.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@169852 91177308-0d34-0410-b5e6-96231b3b80d8
Sooooo many of these had incorrect or strange main module includes.
I have manually inspected all of these, and fixed the main module
include to be the nearest plausible thing I could find. If you own or
care about any of these source files, I encourage you to take some time
and check that these edits were sensible. I can't have broken anything
(I strictly added headers, and reordered them, never removed), but they
may not be the headers you'd really like to identify as containing the
API being implemented.
Many forward declarations and missing includes were added to a header
files to allow them to parse cleanly when included first. The main
module rule does in fact have its merits. =]
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@169131 91177308-0d34-0410-b5e6-96231b3b80d8
Previously in a vector of pointers, the pointer couldn't be any pointer type,
it had to be a pointer to an integer or floating point type. This is a hassle
for dragonegg because the GCC vectorizer happily produces vectors of pointers
where the pointer is a pointer to a struct or whatever. Vector getelementptr
was restricted to just one index, but now that vectors of pointers can have
any pointer type it is more natural to allow arbitrary vector getelementptrs.
There is however the issue of struct GEPs, where if each lane chose different
struct fields then from that point on each lane will be working down into
unrelated types. This seems like too much pain for too little gain, so when
you have a vector struct index all the elements are required to be the same.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@167828 91177308-0d34-0410-b5e6-96231b3b80d8
compute the address space in the one place it was used.
Also write the getPointerAddressSpace member in terms of the
getPointerOperandType member.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@167226 91177308-0d34-0410-b5e6-96231b3b80d8
getIntPtrType support for multiple address spaces via a pointer type,
and also introduced a crasher bug in the constant folder reported in
PR14233.
These commits also contained several problems that should really be
addressed before they are re-committed. I have avoided reverting various
cleanups to the DataLayout APIs that are reasonable to have moving
forward in order to reduce the amount of churn, and minimize the number
of commits that were reverted. I've also manually updated merge
conflicts and manually arranged for the getIntPtrType function to stay
in DataLayout and to be defined in a plausible way after this revert.
Thanks to Duncan for working through this exact strategy with me, and
Nick Lewycky for tracking down the really annoying crasher this
triggered. (Test case to follow in its own commit.)
After discussing with Duncan extensively, and based on a note from
Micah, I'm going to continue to back out some more of the more
problematic patches in this series in order to ensure we go into the
LLVM 3.2 branch with a reasonable story here. I'll send a note to
llvmdev explaining what's going on and why.
Summary of reverted revisions:
r166634: Fix a compiler warning with an unused variable.
r166607: Add some cleanup to the DataLayout changes requested by
Chandler.
r166596: Revert "Back out r166591, not sure why this made it through
since I cancelled the command. Bleh, sorry about this!
r166591: Delete a directory that wasn't supposed to be checked in yet.
r166578: Add in support for getIntPtrType to get the pointer type based
on the address space.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@167221 91177308-0d34-0410-b5e6-96231b3b80d8
We use the enums to query whether an Attributes object has that attribute. The
opaque layer is responsible for knowing where that specific attribute is stored.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@165488 91177308-0d34-0410-b5e6-96231b3b80d8
Original message:
Performance optimizations:
- SwitchInst: case values stored separately from Operands List. It allows to make faster access to individual case value numbers or ranges.
- Optimized IntItem, added APInt value caching.
- Optimized IntegersSubsetGeneric: added optimizations for cases when subset is single number or when subset consists from single numbers only.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@158997 91177308-0d34-0410-b5e6-96231b3b80d8
fail. Original commit message:
Performance optimizations:
- SwitchInst: case values stored separately from Operands List. It allows to make faster access to individual case value numbers or ranges.
- Optimized IntItem, added APInt value caching.
- Optimized IntegersSubsetGeneric: added optimizations for cases when subset is single number or when subset consists from single numbers only.
On my machine these optimizations gave about 4-6% of compile-time improvement.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@158986 91177308-0d34-0410-b5e6-96231b3b80d8
- SwitchInst: case values stored separately from Operands List. It allows to make faster access to individual case value numbers or ranges.
- Optimized IntItem, added APInt value caching.
- Optimized IntegersSubsetGeneric: added optimizations for cases when subset is single number or when subset consists from single numbers only.
On my machine these optimizations gave about 4-6% of compile-time improvement.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@158979 91177308-0d34-0410-b5e6-96231b3b80d8
Implemented IntItem - the wrapper around APInt. Why not to use APInt item directly right now?
1. It will very difficult to implement case ranges as series of small patches. We got several large and heavy patches. Each patch will about 90-120 kb. If you replace ConstantInt with APInt in SwitchInst you will need to changes at the same time all Readers,Writers and absolutely all passes that uses SwitchInst.
2. We can implement APInt pool inside and save memory space. E.g. we use several switches that works with 256 bit items (switch on signatures, or strings). We can avoid value duplicates in this case.
3. IntItem can be easyly easily replaced with APInt.
4. Currenly we can interpret IntItem both as ConstantInt and as APInt. It allows to provide SwitchInst methods that works with ConstantInt for non-updated passes.
Why I need it right now? Currently I need to update SimplifyCFG pass (EqualityComparisons). I need to work with APInts directly a lot, so peaces of code
ConstantInt *V = ...;
if (V->getValue().ugt(AnotherV->getValue()) {
...
}
will look awful. Much more better this way:
IntItem V = ConstantIntVal->getValue();
if (AnotherV < V) {
}
Of course any reviews are welcome.
P.S.: I'm also going to rename ConstantRangesSet to IntegersSubset, and CRSBuilder to IntegersSubsetMapping (allows to map individual subsets of integers to the BasicBlocks).
Since in future these classes will founded on APInt, it will possible to use them in more generic ways.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@157576 91177308-0d34-0410-b5e6-96231b3b80d8
Ordinary patch for PR1255.
Added new case-ranges orientated methods for adding/removing cases in SwitchInst. After this patch cases will internally representated as ConstantArray-s instead of ConstantInt, externally cases wrapped within the ConstantRangesSet object.
Old methods of SwitchInst are also works well, but marked as deprecated. So on this stage we have no side effects except that I added support for case ranges in BitcodeReader/Writer, of course test for Bitcode is also added. Old "switch" format is also supported.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@156704 91177308-0d34-0410-b5e6-96231b3b80d8
Added new case-ranges orientated methods for adding/removing cases in SwitchInst. After this patch cases will internally representated as ConstantArray-s instead of ConstantInt, externally cases wrapped within the ConstantRangesSet object.
Old methods of SwitchInst are also works well, but marked as deprecated. So on this stage we have no side effects except that I added support for case ranges in BitcodeReader/Writer, of course test for Bitcode is also added. Old "switch" format is also supported.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@156374 91177308-0d34-0410-b5e6-96231b3b80d8
through the use of 'fpmath' metadata. Currently this only provides a 'fpaccuracy'
value, which may be a number in ULPs or the keyword 'fast', however the intent is
that this will be extended with additional information about NaN's, infinities
etc later. No optimizations have been hooked up to this so far.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@154822 91177308-0d34-0410-b5e6-96231b3b80d8
http://lists.cs.uiuc.edu/pipermail/llvm-commits/Week-of-Mon-20120130/136146.html
Implemented CaseIterator and it solves almost all described issues: we don't need to mix operand/case/successor indexing anymore. Base iterator class is implemented as a template since it may be initialized either from "const SwitchInst*" or from "SwitchInst*".
ConstCaseIt is just a read-only iterator.
CaseIt is read-write iterator; it allows to change case successor and case value.
Usage of iterator allows totally remove resolveXXXX methods. All indexing convertions done automatically inside the iterator's getters.
Main way of iterator usage looks like this:
SwitchInst *SI = ... // intialize it somehow
for (SwitchInst::CaseIt i = SI->caseBegin(), e = SI->caseEnd(); i != e; ++i) {
BasicBlock *BB = i.getCaseSuccessor();
ConstantInt *V = i.getCaseValue();
// Do something.
}
If you want to convert case number to TerminatorInst successor index, just use getSuccessorIndex iterator's method.
If you want initialize iterator from TerminatorInst successor index, use CaseIt::fromSuccessorIndex(...) method.
There are also related changes in llvm-clients: klee and clang.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@152297 91177308-0d34-0410-b5e6-96231b3b80d8
The purpose of refactoring is to hide operand roles from SwitchInst user (programmer). If you want to play with operands directly, probably you will need lower level methods than SwitchInst ones (TerminatorInst or may be User). After this patch we can reorganize SwitchInst operands and successors as we want.
What was done:
1. Changed semantics of index inside the getCaseValue method:
getCaseValue(0) means "get first case", not a condition. Use getCondition() if you want to resolve the condition. I propose don't mix SwitchInst case indexing with low level indexing (TI successors indexing, User's operands indexing), since it may be dangerous.
2. By the same reason findCaseValue(ConstantInt*) returns actual number of case value. 0 means first case, not default. If there is no case with given value, ErrorIndex will returned.
3. Added getCaseSuccessor method. I propose to avoid usage of TerminatorInst::getSuccessor if you want to resolve case successor BB. Use getCaseSuccessor instead, since internal SwitchInst organization of operands/successors is hidden and may be changed in any moment.
4. Added resolveSuccessorIndex and resolveCaseIndex. The main purpose of these methods is to see how case successors are really mapped in TerminatorInst.
4.1 "resolveSuccessorIndex" was created if you need to level down from SwitchInst to TerminatorInst. It returns TerminatorInst's successor index for given case successor.
4.2 "resolveCaseIndex" converts low level successors index to case index that curresponds to the given successor.
Note: There are also related compatability fix patches for dragonegg, klee, llvm-gcc-4.0, llvm-gcc-4.2, safecode, clang.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@149481 91177308-0d34-0410-b5e6-96231b3b80d8
more robust) ways to do what it was doing now. Also, add static methods
for decoding a ShuffleVector mask.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@149028 91177308-0d34-0410-b5e6-96231b3b80d8
did something extremely surprising, and shadowed actually useful
implementations that had completely different behavior.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@148898 91177308-0d34-0410-b5e6-96231b3b80d8
fix up later. For this special case, allow such a mask to be considered valid.
<rdar://problem/8622574>
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@142992 91177308-0d34-0410-b5e6-96231b3b80d8