implicit. e.g.
%D6<def>, %D7<def> = VLD1q16 %R2<kill>, 0, ..., %Q3<imp-def>
%Q1<def> = VMULv8i16 %Q1<kill>, %Q3<kill>, ...
The real definition indices are 0,1.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@116080 91177308-0d34-0410-b5e6-96231b3b80d8
allow target to correctly compute latency for cases where static scheduling
itineraries isn't sufficient. e.g. variable_ops instructions such as
ARM::ldm.
This also allows target without scheduling itineraries to compute operand
latencies. e.g. X86 can return (approximated) latencies for high latency
instructions such as division.
- Compute operand latencies for those defined by load multiple instructions,
e.g. ldm and those used by store multiple instructions, e.g. stm.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@115755 91177308-0d34-0410-b5e6-96231b3b80d8
take multiple cycles to decode.
For the current if-converter clients (actually only ARM), the instructions that
are predicated on false are not nops. They would still take machine cycles to
decode. Micro-coded instructions such as LDM / STM can potentially take multiple
cycles to decode. If-converter should take treat them as non-micro-coded
simple instructions.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@113570 91177308-0d34-0410-b5e6-96231b3b80d8
instead of fixed size arrays, so that increasing FirstVirtualRegister to 16K
won't cause a compile time performance regression.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@109330 91177308-0d34-0410-b5e6-96231b3b80d8
and T->isPointerTy(). Convert most instances of the first form to the second form.
Requested by Chris.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@96344 91177308-0d34-0410-b5e6-96231b3b80d8
machineinstr whether the aliased register is dead, rather than the original
register is dead. This allows it to get the correct answer when examining
an instruction like this:
CALLpcrel32 <ga:foo>, %AL<imp-def>, %EAX<imp-def,dead>
where EAX is dead but a subregister of it is still live. This fixes PR5294.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@85135 91177308-0d34-0410-b5e6-96231b3b80d8
stack slots and giving them different PseudoSourceValue's did not fix the
problem of post-alloc scheduling miscompiling llvm itself.
- Apply Dan's conservative workaround by assuming any non fixed stack slots can
alias other memory locations. This means a load from spill slot #1 cannot
move above a store of spill slot #2.
- Enable post-alloc scheduling for x86 at optimization leverl Default and above.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@84424 91177308-0d34-0410-b5e6-96231b3b80d8
is trivially rematerializable and integrate it into
TargetInstrInfo::isTriviallyReMaterializable. This way, all places that
need to know whether an instruction is rematerializable will get the
same answer.
This enables the useful parts of the aggressive-remat option by
default -- using AliasAnalysis to determine whether a memory location
is invariant, and removes the questionable parts -- rematting operations
with virtual register inputs that may not be live everywhere.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@83687 91177308-0d34-0410-b5e6-96231b3b80d8
implementations with a new MachineInstr::isInvariantLoad, which uses
MachineMemOperands and is target-independent. This brings MachineLICM
and other functionality to targets which previously lacked an
isInvariantLoad implementation.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@83475 91177308-0d34-0410-b5e6-96231b3b80d8
- Allocate MachineMemOperands and MachineMemOperand lists in MachineFunctions.
This eliminates MachineInstr's std::list member and allows the data to be
created by isel and live for the remainder of codegen, avoiding a lot of
copying and unnecessary translation. This also shrinks MemSDNode.
- Delete MemOperandSDNode. Introduce MachineSDNode which has dedicated
fields for MachineMemOperands.
- Change MemSDNode to have a MachineMemOperand member instead of its own
fields with the same information. This introduces some redundancy, but
it's more consistent with what MachineInstr will eventually want.
- Ignore alignment when searching for redundant loads for CSE, but remember
the greatest alignment.
Target-specific code which previously used MemOperandSDNodes with generic
SDNodes now use MemIntrinsicSDNodes, with opcodes in a designated range
so that the SelectionDAG framework knows that MachineMemOperand information
is available.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@82794 91177308-0d34-0410-b5e6-96231b3b80d8
and related functions out of LoopBase and into Loop, since they
are specific to BasicBlock-based loops. This also allows the code
to be moved out-of-line.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@75523 91177308-0d34-0410-b5e6-96231b3b80d8
instruction index across each part. Instruction indices are used
to make live range queries, and live ranges can extend beyond
scheduling region boundaries.
Refactor the ScheduleDAGSDNodes class some more so that it
doesn't have to worry about this additional information.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@64288 91177308-0d34-0410-b5e6-96231b3b80d8
scheduling, and generalize is so that preserves state across
scheduling regions. This fixes incorrect live-range information around
terminators and labels, which are effective region boundaries.
In place of looking for terminators to anchor inter-block dependencies,
introduce special entry and exit scheduling units for this purpose.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@64254 91177308-0d34-0410-b5e6-96231b3b80d8
that used this header to select a scheduling policy should
use SchedulerRegistry.h instead (llvm-gcc and clang were
updated a while ago).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@63934 91177308-0d34-0410-b5e6-96231b3b80d8
If a MachineInstr doesn't have a memoperand but has an opcode that
is known to load or store, assume its memory reference may alias
*anything*, including stack slots which the compiler completely
controls.
To partially compensate for this, teach the ScheduleDAG building
code to do basic getUnderlyingValue analysis. This greatly
reduces the number of instructions that require restrictive
dependencies. This code will need to be revisited when we start
doing real alias analysis, but it should suffice for now.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@63370 91177308-0d34-0410-b5e6-96231b3b80d8
and every other instruction in their blocks to keep the terminator
instructions at the end, teach the post-RA scheduler how to operate
on ranges of instructions, and exclude terminators from the range
of instructions that get scheduled.
Also, exclude mid-block labels, such as EH_LABEL instructions, and
schedule code before them separately from code after them. This
fixes problems with the post-RA scheduler moving code past
EH_LABELs.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@62366 91177308-0d34-0410-b5e6-96231b3b80d8
and into the ScheduleDAGInstrs class, so that they don't get
destructed and re-constructed for each block. This fixes a
compile-time hot spot in the post-pass scheduler.
To help facilitate this, tidy and do some minor reorganization
in the scheduler constructor functions.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@62275 91177308-0d34-0410-b5e6-96231b3b80d8
This removes all the _8, _16, _32, and _64 opcodes and replaces each
group with an unsuffixed opcode. The MemoryVT field of the AtomicSDNode
is now used to carry the size information. In tablegen, the size-specific
opcodes are replaced by size-independent opcodes that utilize the
ability to compose them with predicates.
This shrinks the per-opcode tables and makes the code that handles
atomics much more concise.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@61389 91177308-0d34-0410-b5e6-96231b3b80d8
several places. isTerminator() returns true for a superset
of cases, and includes things like FP_REG_KILL, which are
nither return or branch but aren't safe to move/remat/etc.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@61373 91177308-0d34-0410-b5e6-96231b3b80d8
computation code. Also, avoid adding output-depenency edges when both
defs are dead, which frequently happens with EFLAGS defs.
Compute Depth and Height lazily, and always in terms of edge latency
values. For the schedulers that don't care about latency, edge latencies
are set to 1.
Eliminate Cycle and CycleBound, and LatencyPriorityQueue's Latencies array.
These are all subsumed by the Depth and Height fields.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@61073 91177308-0d34-0410-b5e6-96231b3b80d8
The Cost field is removed. It was only being used in a very limited way,
to indicate when the scheduler should attempt to protect a live register,
and it isn't really needed to do that. If we ever want the scheduler to
start inserting copies in non-prohibitive situations, we'll have to
rethink some things anyway.
A Latency field is added. Instead of giving each node a single
fixed latency, each edge can have its own latency. This will eventually
be used to model various micro-architecture properties more accurately.
The PointerIntPair class and an internal union are now used, which
reduce the overall size.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@60806 91177308-0d34-0410-b5e6-96231b3b80d8