isDereferenceablePointer should not give up upon encountering any bitcast. If
we're casting from a pointer to a larger type to a pointer to a small type, we
can continue by examining the bitcast's operand. This missing capability
was noted in a comment in the function.
In order for this to work, isDereferenceablePointer now takes an optional
DataLayout pointer (essentially all callers already had such a pointer
available). Most code uses isDereferenceablePointer though
isSafeToSpeculativelyExecute (which already took an optional DataLayout
pointer), and to enable the LICM test case, LICM needs to actually provide its DL
pointer to isSafeToSpeculativelyExecute (which it was not doing previously).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@212686 91177308-0d34-0410-b5e6-96231b3b80d8
These don't need to be mutable and callers being added soon in CodeGen
won't have access to non-const Module&.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@212202 91177308-0d34-0410-b5e6-96231b3b80d8
Matching behavior with DeadArgumentElimination (and leveraging some
now-common infrastructure), keep track of the function from debug info
metadata if arguments are promoted.
This may produce interesting debug info - since the arguments may be
missing or of different types... but at least backtraces, inlining, etc,
will be correct.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@212128 91177308-0d34-0410-b5e6-96231b3b80d8
definition below all of the header #include lines, lib/Transforms/...
edition.
This one is tricky for two reasons. We again have a couple of passes
that define something else before the includes as well. I've sunk their
name macros with the DEBUG_TYPE.
Also, InstCombine contains headers that need DEBUG_TYPE, so now those
headers #define and #undef DEBUG_TYPE around their code, leaving them
well formed modular headers. Fixing these headers was a large motivation
for all of these changes, as "leaky" macros of this form are hard on the
modules implementation.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@206844 91177308-0d34-0410-b5e6-96231b3b80d8
This requires a number of steps.
1) Move value_use_iterator into the Value class as an implementation
detail
2) Change it to actually be a *Use* iterator rather than a *User*
iterator.
3) Add an adaptor which is a User iterator that always looks through the
Use to the User.
4) Wrap these in Value::use_iterator and Value::user_iterator typedefs.
5) Add the range adaptors as Value::uses() and Value::users().
6) Update *all* of the callers to correctly distinguish between whether
they wanted a use_iterator (and to explicitly dig out the User when
needed), or a user_iterator which makes the Use itself totally
opaque.
Because #6 requires churning essentially everything that walked the
Use-Def chains, I went ahead and added all of the range adaptors and
switched them to range-based loops where appropriate. Also because the
renaming requires at least churning every line of code, it didn't make
any sense to split these up into multiple commits -- all of which would
touch all of the same lies of code.
The result is still not quite optimal. The Value::use_iterator is a nice
regular iterator, but Value::user_iterator is an iterator over User*s
rather than over the User objects themselves. As a consequence, it fits
a bit awkwardly into the range-based world and it has the weird
extra-dereferencing 'operator->' that so many of our iterators have.
I think this could be fixed by providing something which transforms
a range of T&s into a range of T*s, but that *can* be separated into
another patch, and it isn't yet 100% clear whether this is the right
move.
However, this change gets us most of the benefit and cleans up
a substantial amount of code around Use and User. =]
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@203364 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
I searched Transforms/ and Analysis/ for 'ByVal' and updated those call
sites to check for inalloca if appropriate.
I added tests for any change that would allow an optimization to fire on
inalloca.
Reviewers: nlewycky
Differential Revision: http://llvm-reviews.chandlerc.com/D2449
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@200281 91177308-0d34-0410-b5e6-96231b3b80d8
Argument promotion can replace an argument of a call with an alloca. This
requires clearing the tail marker as it is very likely that the callee is now
using an alloca in the caller.
This fixes pr14710.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@199909 91177308-0d34-0410-b5e6-96231b3b80d8
CallGraph.
This makes the CallGraph a totally generic analysis object that is the
container for the graph data structure and the primary interface for
querying and manipulating it. The pass logic is separated into its own
class. For compatibility reasons, the pass provides wrapper methods for
most of the methods on CallGraph -- they all just forward.
This will allow the new pass manager infrastructure to provide its own
analysis pass that constructs the same CallGraph object and makes it
available. The idea is that in the new pass manager, the analysis pass's
'run' method returns a concrete analysis 'result'. Here, that result is
a 'CallGraph'. The 'run' method will typically do only minimal work,
deferring much of the work into the implementation of the result object
in order to be lazy about computing things, but when (like DomTree)
there is *some* up-front computation, the analysis does it prior to
handing the result back to the querying pass.
I know some of this is fairly ugly. I'm happy to change it around if
folks can suggest a cleaner interim state, but there is going to be some
amount of unavoidable ugliness during the transition period. The good
thing is that this is very limited and will naturally go away when the
old pass infrastructure goes away. It won't hang around to bother us
later.
Next up is the initial new-PM-style call graph analysis. =]
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@195722 91177308-0d34-0410-b5e6-96231b3b80d8
We used to use std::map<IndicesVector, LoadInst*> for OriginalLoads, and when we
try to promote two arguments, they will both write to OriginalLoads causing
created loads for the two arguments to have the same original load. And the same
tbaa tag and alignment will be put to the created loads for the two arguments.
The fix is to use std::map<std::pair<Argument*, IndicesVector>, LoadInst*>
for OriginalLoads, so each Argument will write to different parts of the map.
PR17906
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@194846 91177308-0d34-0410-b5e6-96231b3b80d8
In the future, AttributeWithIndex won't be used anymore. Besides, it exposes the
internals of the AttributeSet to outside users, which isn't goodness.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@173601 91177308-0d34-0410-b5e6-96231b3b80d8
Collections of attributes are handled via the AttributeSet class now. This
finally frees us up to make significant changes to how attributes are structured.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@173228 91177308-0d34-0410-b5e6-96231b3b80d8
This is more code to isolate the use of the Attribute class to that of just
holding one attribute instead of a collection of attributes.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@173094 91177308-0d34-0410-b5e6-96231b3b80d8
Further encapsulation of the Attribute object. Don't allow direct access to the
Attribute object as an aggregate.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@172853 91177308-0d34-0410-b5e6-96231b3b80d8
Because the Attribute class is going to stop representing a collection of
attributes, limit the use of it as an aggregate in favor of using AttributeSet.
This replaces some of the uses for querying the function attributes.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@172844 91177308-0d34-0410-b5e6-96231b3b80d8
into their new header subdirectory: include/llvm/IR. This matches the
directory structure of lib, and begins to correct a long standing point
of file layout clutter in LLVM.
There are still more header files to move here, but I wanted to handle
them in separate commits to make tracking what files make sense at each
layer easier.
The only really questionable files here are the target intrinsic
tablegen files. But that's a battle I'd rather not fight today.
I've updated both CMake and Makefile build systems (I think, and my
tests think, but I may have missed something).
I've also re-sorted the includes throughout the project. I'll be
committing updates to Clang, DragonEgg, and Polly momentarily.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@171366 91177308-0d34-0410-b5e6-96231b3b80d8
Sooooo many of these had incorrect or strange main module includes.
I have manually inspected all of these, and fixed the main module
include to be the nearest plausible thing I could find. If you own or
care about any of these source files, I encourage you to take some time
and check that these edits were sensible. I can't have broken anything
(I strictly added headers, and reordered them, never removed), but they
may not be the headers you'd really like to identify as containing the
API being implemented.
Many forward declarations and missing includes were added to a header
files to allow them to parse cleanly when included first. The main
module rule does in fact have its merits. =]
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@169131 91177308-0d34-0410-b5e6-96231b3b80d8
When code deletes the context, the AttributeImpls that the AttrListPtr points to
are now invalid. Therefore, instead of keeping a separate managed static for the
AttrListPtrs that's reference counted, move it into the LLVMContext and delete
it when deleting the AttributeImpls.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@168354 91177308-0d34-0410-b5e6-96231b3b80d8
We use the enums to query whether an Attributes object has that attribute. The
opaque layer is responsible for knowing where that specific attribute is stored.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@165488 91177308-0d34-0410-b5e6-96231b3b80d8
an assert on Darwin llvm-gcc builds.
Assertion failed: (castIsValid(op, S, Ty) && "Invalid cast!"), function Create, file /Users/buildslave/zorg/buildbot/smooshlab/slave-0.8/build.llvm-gcc-i386-darwin9-RA/llvm.src/lib/VMCore/Instructions.cpp, li\
ne 2067.
etc.
http://smooshlab.apple.com:8013/builders/llvm-gcc-i386-darwin9-RA/builds/2354
--- Reverse-merging r134893 into '.':
U include/llvm/Target/TargetData.h
U include/llvm/DerivedTypes.h
U tools/bugpoint/ExtractFunction.cpp
U unittests/Support/TypeBuilderTest.cpp
U lib/Target/ARM/ARMGlobalMerge.cpp
U lib/Target/TargetData.cpp
U lib/VMCore/Constants.cpp
U lib/VMCore/Type.cpp
U lib/VMCore/Core.cpp
U lib/Transforms/Utils/CodeExtractor.cpp
U lib/Transforms/Instrumentation/ProfilingUtils.cpp
U lib/Transforms/IPO/DeadArgumentElimination.cpp
U lib/CodeGen/SjLjEHPrepare.cpp
--- Reverse-merging r134888 into '.':
G include/llvm/DerivedTypes.h
U include/llvm/Support/TypeBuilder.h
U include/llvm/Intrinsics.h
U unittests/Analysis/ScalarEvolutionTest.cpp
U unittests/ExecutionEngine/JIT/JITTest.cpp
U unittests/ExecutionEngine/JIT/JITMemoryManagerTest.cpp
U unittests/VMCore/PassManagerTest.cpp
G unittests/Support/TypeBuilderTest.cpp
U lib/Target/MBlaze/MBlazeIntrinsicInfo.cpp
U lib/Target/Blackfin/BlackfinIntrinsicInfo.cpp
U lib/VMCore/IRBuilder.cpp
G lib/VMCore/Type.cpp
U lib/VMCore/Function.cpp
G lib/VMCore/Core.cpp
U lib/VMCore/Module.cpp
U lib/AsmParser/LLParser.cpp
U lib/Transforms/Utils/CloneFunction.cpp
G lib/Transforms/Utils/CodeExtractor.cpp
U lib/Transforms/Utils/InlineFunction.cpp
U lib/Transforms/Instrumentation/GCOVProfiling.cpp
U lib/Transforms/Scalar/ObjCARC.cpp
U lib/Transforms/Scalar/SimplifyLibCalls.cpp
U lib/Transforms/Scalar/MemCpyOptimizer.cpp
G lib/Transforms/IPO/DeadArgumentElimination.cpp
U lib/Transforms/IPO/ArgumentPromotion.cpp
U lib/Transforms/InstCombine/InstCombineCompares.cpp
U lib/Transforms/InstCombine/InstCombineAndOrXor.cpp
U lib/Transforms/InstCombine/InstCombineCalls.cpp
U lib/CodeGen/DwarfEHPrepare.cpp
U lib/CodeGen/IntrinsicLowering.cpp
U lib/Bitcode/Reader/BitcodeReader.cpp
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@134949 91177308-0d34-0410-b5e6-96231b3b80d8
testing for dereferenceable pointers into a helper function,
isDereferenceablePointer. Teach it how to reason about GEPs
with simple non-zero indices.
Also eliminate ArgumentPromtion's IsAlwaysValidPointer,
which didn't check for weak externals or out of range gep
indices.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@118840 91177308-0d34-0410-b5e6-96231b3b80d8
must be called in the pass's constructor. This function uses static dependency declarations to recursively initialize
the pass's dependencies.
Clients that only create passes through the createFooPass() APIs will require no changes. Clients that want to use the
CommandLine options for passes will need to manually call the appropriate initialization functions in PassInitialization.h
before parsing commandline arguments.
I have tested this with all standard configurations of clang and llvm-gcc on Darwin. It is possible that there are problems
with the static dependencies that will only be visible with non-standard options. If you encounter any crash in pass
registration/creation, please send the testcase to me directly.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@116820 91177308-0d34-0410-b5e6-96231b3b80d8