accessed at least once as a vector. This prevents it from
compiling the example in not-a-vector into:
define double @test(double %A, double %B) {
%tmp4 = insertelement <7 x double> undef, double %A, i32 0
%tmp = insertelement <7 x double> %tmp4, double %B, i32 4
%tmp2 = extractelement <7 x double> %tmp, i32 4
ret double %tmp2
}
instead, producing the integer code. Producing vectors when they
aren't otherwise in the program is dangerous because a lot of other
code treats them carefully and doesn't want to break them down.
OTOH, many things want to break down tasty i448's.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@63638 91177308-0d34-0410-b5e6-96231b3b80d8
With the new world order, it can handle cases where the first
store into the alloca is an element of the vector, instead of
requiring the first analyzed store to have the vector type
itself. This allows us to un-xfail
test/CodeGen/X86/vec_ins_extract.ll.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@63590 91177308-0d34-0410-b5e6-96231b3b80d8
turn icmp eq a+x, b+x into icmp eq a, b if a+x or b+x has other uses. This
may have been increasing register pressure leading to the bzip2 slowdown.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@63487 91177308-0d34-0410-b5e6-96231b3b80d8
improvements to the EvaluateInDifferentType code. This code works
by just inserted a bunch of new code and then seeing if it is
useful. Instcombine is not allowed to do this: it can only insert
new code if it is useful, and only when it is converging to a more
canonical fixed point. Now that we iterate when DCE makes progress,
this causes an infinite loop when the code ends up not being used.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@63483 91177308-0d34-0410-b5e6-96231b3b80d8
simplifydemandedbits to simplify instructions with *multiple
uses* in contexts where it can get away with it. This allows
it to simplify the code in multi-use-or.ll into a single 'add
double'.
This change is particularly interesting because it will cover
up for some common codegen bugs with large integers created due
to the recent SROA patch. When working on fixing those bugs,
this should be disabled.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@63481 91177308-0d34-0410-b5e6-96231b3b80d8
Now, if it detects that "V" is the same as some other value,
SimplifyDemandedBits returns the new value instead of RAUW'ing it immediately.
This has two benefits:
1) simpler code in the recursive SimplifyDemandedBits routine.
2) it allows future fun stuff in instcombine where an operation has multiple
uses and can be simplified in one context, but not all.
#2 isn't implemented yet, this patch should have no functionality change.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@63479 91177308-0d34-0410-b5e6-96231b3b80d8
not doing so prevents it from properly iterating and prevents it
from deleting the entire body of dce-iterate.ll
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@63476 91177308-0d34-0410-b5e6-96231b3b80d8
be able to handle *ANY* alloca that is poked by loads and stores of
bitcasts and GEPs with constant offsets. Before the code had a number
of annoying limitations and caused it to miss cases such as storing into
holes in structs and complex casts (as in bitfield-sroa) where we had
unions of bitfields etc. This also handles a number of important cases
that are exposed due to the ABI lowering stuff we do to pass stuff by
value.
One case that is pretty great is that we compile
2006-11-07-InvalidArrayPromote.ll into:
define i32 @func(<4 x float> %v0, <4 x float> %v1) nounwind {
%tmp10 = call <4 x i32> @llvm.x86.sse2.cvttps2dq(<4 x float> %v1)
%tmp105 = bitcast <4 x i32> %tmp10 to i128
%tmp1056 = zext i128 %tmp105 to i256
%tmp.upgrd.43 = lshr i256 %tmp1056, 96
%tmp.upgrd.44 = trunc i256 %tmp.upgrd.43 to i32
ret i32 %tmp.upgrd.44
}
which turns into:
_func:
subl $28, %esp
cvttps2dq %xmm1, %xmm0
movaps %xmm0, (%esp)
movl 12(%esp), %eax
addl $28, %esp
ret
Which is pretty good code all things considering :).
One effect of this is that SROA will start generating arbitrary bitwidth
integers that are a multiple of 8 bits. In the case above, we got a
256 bit integer, but the codegen guys assure me that it can handle the
simple and/or/shift/zext stuff that we're doing on these operations.
This addresses rdar://6532315
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@63469 91177308-0d34-0410-b5e6-96231b3b80d8
Thus we need to check whether the struct is empty before trying to index into
it. This fixes PR3381.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@62918 91177308-0d34-0410-b5e6-96231b3b80d8
handling the case in Transforms/InstCombine/cast-store-gep.ll, which
is a heavily reduced testcase from Clang on x86-64.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@62904 91177308-0d34-0410-b5e6-96231b3b80d8
There is now a direct way from value-use-iterator to incoming block in PHINode's API.
This way we avoid the iterator->index->iterator trip, and especially the costly
getOperandNo() invocation. Additionally there is now an assertion that the iterator
really refers to one of the PHI's Uses.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@62869 91177308-0d34-0410-b5e6-96231b3b80d8
Besides APFloat, this involved removing code
from two places that thought they knew the
result of frem(0., x) but were wrong.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@62645 91177308-0d34-0410-b5e6-96231b3b80d8
putc, puts, perror, vscanf and vsscanf from getting annotations.
Add annotations for eight printf functions, memalign, pread and pwrite.
On Linux, llvm-gcc sometimes renames strdup, getc, putc, strtok_r, scanf and
sscanf. Match the alternate function names.
Fix a crash annotating opendir.
Don't mark fsetpos's second parameter as nocapture. It's supposed to be
captured.
Do mark fopen's path and mode strings as nocapture. Mark ferror as readonly,
but not fileno which may set errno.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@62456 91177308-0d34-0410-b5e6-96231b3b80d8
- Looking at the number of sign bits of the a sext instruction to determine whether new trunc + sext pair should be added when its source is being evaluated in a different type.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@62263 91177308-0d34-0410-b5e6-96231b3b80d8
my earlier patch to this file.
The issue there was that all uses of an IV inside a loop
are actually references to Base[IV*2], and there was one
use outside that was the same but LSR didn't see the base
or the scaling because it didn't recurse into uses outside
the loop; thus, it used base+IV*scale mode inside the loop
instead of pulling base out of the loop. This was extra bad
because register pressure later forced both base and IV into
memory. Doing that recursion, at least enough
to figure out addressing modes, is a good idea in general;
the change in AddUsersIfInteresting does this. However,
there were side effects....
It is also possible for recursing outside the loop to
introduce another IV where there was only 1 before (if
the refs inside are not scaled and the ref outside is).
I don't think this is a common case, but it's in the testsuite.
It is right to be very aggressive about getting rid of
such introduced IVs (CheckForIVReuse and the handling of
nonzero RewriteFactor in StrengthReduceStridedIVUsers).
In the testcase in question the new IV produced this way
has both a nonconstant stride and a nonzero base, neither
of which was handled before. And when inserting
new code that feeds into a PHI, it's right to put such
code at the original location rather than in the PHI's
immediate predecessor(s) when the original location is outside
the loop (a case that couldn't happen before)
(RewriteInstructionToUseNewBase); better to avoid making
multiple copies of it in this case.
Also, the mechanism for keeping SCEV's corresponding to GEP's
no longer works, as the GEP might change after its SCEV
is remembered, invalidating the SCEV, and we might get a bad
SCEV value when looking up the GEP again for a later loop.
This also couldn't happen before, as we weren't recursing
into GEP's outside the loop.
Also, when we build an expression that involves a (possibly
non-affine) IV from a different loop as well as an IV from
the one we're interested in (containsAddRecFromDifferentLoop),
don't recurse into that. We can't do much with it and will
get in trouble if we try to create new non-affine IVs or something.
More testcases are coming.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@62212 91177308-0d34-0410-b5e6-96231b3b80d8
canonicalization transform based on duncan's comments:
1) improve the comment about %.
2) within our index loop make sure the offset stays
within the *type size*, instead of within the *abi size*.
This allows us to reason explicitly about landing in tail
padding and means that issues like non-zero offsets into
[0 x foo] types don't occur anymore.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@62045 91177308-0d34-0410-b5e6-96231b3b80d8