The current implementation generates stack loads/stores, which are
really just mov instructions from/to "special" registers. This may
not be the most efficient implementation, compared to an approach where
the stack registers are directly folded into instructions, but this is
easier to implement and I have yet to see a case where ptxas is unable
to see through this kind of register usage and know what is really
going on.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@133443 91177308-0d34-0410-b5e6-96231b3b80d8
Change PHINodes to store simple pointers to their incoming basic blocks,
instead of full-blown Uses.
Note that this loses an optimization in SplitCriticalEdge(), because we
can no longer walk the use list of a BasicBlock to find phi nodes. See
the comment I removed starting "However, the foreach loop is slow for
blocks with lots of predecessors".
Extend replaceAllUsesWith() on a BasicBlock to also update any phi
nodes in the block's successors. This mimics what would have happened
when PHINodes were proper Users of their incoming blocks. (Note that
this only works if OldBB->replaceAllUsesWith(NewBB) is called when
OldBB still has a terminator instruction, so it still has some
successors.)
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@133435 91177308-0d34-0410-b5e6-96231b3b80d8
Change various bits of code to make better use of the existing PHINode
API, to insulate them from forthcoming changes in how PHINodes store
their operands.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@133434 91177308-0d34-0410-b5e6-96231b3b80d8
I don't think the AugmentedUse struct buys us much, either in
correctness or in ease of use. Ditch it, and simplify Use::getUser() and
User::allocHungoffUses().
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@133433 91177308-0d34-0410-b5e6-96231b3b80d8
* Don't introduce a duplicated bb in the CFG
* When making a branch unconditional, clear the PredCond array so that it
is really unconditional.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@133432 91177308-0d34-0410-b5e6-96231b3b80d8
dragonegg buildbots back to life. Original commit message:
Teach early dup how to duplicate basic blocks with one successor and only phi instructions
into more complex blocks.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@133430 91177308-0d34-0410-b5e6-96231b3b80d8
source vector type is to be split while the target vector is to be promoted.
(eg: <4 x i64> -> <4 x i8> )
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@133424 91177308-0d34-0410-b5e6-96231b3b80d8
all over the place in different styles and variants. Standardize on two
preferred entrypoints: one that takes a StructType and ArrayRef, and one that
takes StructType and varargs.
In cases where there isn't a struct type convenient, we now add a
ConstantStruct::getAnon method (whose name will make more sense after a few
more patches land).
It would be "really really nice" if the ConstantStruct::get and
ConstantVector::get methods didn't make temporary std::vectors.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@133412 91177308-0d34-0410-b5e6-96231b3b80d8
A RegisterTuples instance is used to synthesize super-registers by
zipping together lists of sub-registers. This is useful for generating
pseudo-registers representing register sequence constraints like 'two
consecutive GPRs', or 'an even-odd pair of floating point registers'.
The RegisterTuples def can be used in register set operations when
building register classes. That is the only way of accessing the
synthesized super-registers.
For example, the ARM QQ register class of pseudo-registers could have
been formed like this:
// Form pairs Q0_Q1, Q2_Q3, ...
def QQPairs : RegisterTuples<[qsub_0, qsub_1],
[(decimate QPR, 2),
(decimate (shl QPR, 1), 2)]>;
def QQ : RegisterClass<..., (add QQPairs)>;
Similarly, pseudo-registers representing '3 consecutive D-regs with
wraparound' look like:
// Form D0_D1_D2, D1_D2_D3, ..., D30_D31_D0, D31_D0_D1.
def DSeqTriples : RegisterTuples<[dsub_0, dsub_1, dsub_2],
[(rotl DPR, 0),
(rotl DPR, 1),
(rotl DPR, 2)]>;
TableGen automatically computes aliasing information for the synthesized
registers.
Register tuples are still somewhat experimental. We still need to see
how they interact with MC.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@133407 91177308-0d34-0410-b5e6-96231b3b80d8
top level type without a specified number. This asmprinter has never
generated this, as you can tell by no tests being updated. It also isn't
documented.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@133368 91177308-0d34-0410-b5e6-96231b3b80d8
In cases such as the attached test, where the case value for a switch
destination is used in a phi node that follows the destination, it
might be better to replace that value with the condition value of the
switch, so that more blocks can be folded away with
TryToSimplifyUncondBranchFromEmptyBlock because there are less
conflicts in the phi node.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@133344 91177308-0d34-0410-b5e6-96231b3b80d8
type's bitwidth matches the (allocated) size of the alloca. This severely
pessimizes vector scalar replacement when the only vector type being used is
something like <3 x float> on x86 or ARM whose allocated size matches a
<4 x float>.
I hope to fix some of the flawed assumptions about allocated size throughout
scalar replacement and reenable this in most cases.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@133338 91177308-0d34-0410-b5e6-96231b3b80d8
for pre-2.9 bitcode files. We keep x86 unaligned loads, movnt, crc32, and the
target indep prefetch change.
As usual, updating the testsuite is a PITA.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@133337 91177308-0d34-0410-b5e6-96231b3b80d8
Targets that need to change the default allocation order should use the
AltOrders mechanism instead. See the X86 and ARM targets for examples.
The allocation_order_begin() and allocation_order_end() methods have been
replaced with getRawAllocationOrder(), and there is further support
functions in RegisterClassInfo.
It is no longer possible to insert arbitrary code into generated
register classes. This is a feature.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@133332 91177308-0d34-0410-b5e6-96231b3b80d8