The C backend is assumed correct and is used to generate shared objects to be
loaded by the other two code generators.
LLC debugging should be functional now, LLI needs a few more additions to work,
the major one is renaming of external functions to call the JIT lazy function
resolver.
Bugpoint now has a command-line switch -mode with options 'compile' and
'codegen' to debug appropriate portions of tools.
ExecutionDriver.cpp: Added implementations of AbstractInterpreter for LLC and
GCC, broke out common code within other tools, and added ability to generate C
code with CBE individually, without executing the program, and the GCC tool can
generate executables shared objects or executables.
If no reference output is specified to Bugpoint, it will be generated with CBE,
because it is already assumed to be correct for the purposes of debugging using
this method. As a result, many functions now accept as an optional parameter a
shared object to be loaded in, if specified.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@7293 91177308-0d34-0410-b5e6-96231b3b80d8
of codes. For example,
short kernel (short t1) {
t1 >>= 8; t1 <<= 8;
return t1;
}
became:
short %kernel(short %t1.1) {
%tmp.3 = shr short %t1.1, ubyte 8 ; <short> [#uses=1]
%tmp.5 = cast short %tmp.3 to int ; <int> [#uses=1]
%tmp.7 = shl int %tmp.5, ubyte 8 ; <int> [#uses=1]
%tmp.8 = cast int %tmp.7 to short ; <short> [#uses=1]
ret short %tmp.8
}
before, now it becomes:
short %kernel(short %t1.1) {
%tmp.3 = shr short %t1.1, ubyte 8 ; <short> [#uses=1]
%tmp.8 = shl short %tmp.3, ubyte 8 ; <short> [#uses=1]
ret short %tmp.8
}
which will become:
short %kernel(short %t1.1) {
%tmp.3 = and short %t1.1, 0xFF00
ret short %tmp.3
}
This implements cast-set.ll:test4 and test5
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@7290 91177308-0d34-0410-b5e6-96231b3b80d8
doFinalization too except that would have made them shadow, not override,
the parent class :-P.
Allow *any* constant cast expression between pointers and longs,
or vice-versa, or any widening (not just same-size) conversion that
isLosslesslyConvertibleTo approves. This fixes oopack.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@7288 91177308-0d34-0410-b5e6-96231b3b80d8
This fixes a long time annoyance which caused prototypes for bzero, bcopy,
bcmp, fputs, and fputs_unlocked to never get deleted. Grr.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@7285 91177308-0d34-0410-b5e6-96231b3b80d8
Printer::doFinalization() out in the cold. Now we pass in a TargetMachine
to Printer's constructor and get the TargetData from the TargetMachine.
Don't pass TargetMachine or MRegisterInfo objects around in the Printer.
Constify TargetData references.
X86.h: Update comment and prototype of createX86CodePrinterPass().
X86TargetMachine.cpp: Update callers of createX86CodePrinterPass().
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@7275 91177308-0d34-0410-b5e6-96231b3b80d8
Stop passing ostreams around: we already have one perfectly good ostream
and we can all share it.
Stop stashing a pointer to TargetData in the Pass object, because that will
lead to a crash if there are no functions in the module (ouch!) Instead,
use addRequired() and getAnalysis(), like we always should have done.
Move the check for ConstantExpr up before the check for isPrimitiveType,
because we need to be able to catch e.g. ubyte (cast bool false to ubyte),
whose type is primitive but which is nevertheless a ConstantExpr, by calling
our specialized handler instead of the AsmWriter. This would result in
assembler errors when we would try to output something like ".byte (cast
bool false to ubyte)".
GC some unused variable declarations.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@7265 91177308-0d34-0410-b5e6-96231b3b80d8
IC: (X ^ C1) | C2 --> (X | C2) ^ (C1&~C2)
We are now guaranteed that all 'or's will be inside of 'and's, and all 'and's
will be inside of 'xor's, if the second operands are constants.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@7264 91177308-0d34-0410-b5e6-96231b3b80d8