to use the information in the module rather than TargetOptions.
We've had and clang has used the use-soft-float attribute for some
time now so have the backends set a subtarget feature based on
a particular function now that subtargets are created based on
functions and function attributes.
For the one middle end soft float check go ahead and create
an overloadable TargetLowering::useSoftFloat function that
just checks the TargetSubtargetInfo in all cases.
Also remove the command line option that hard codes whether or
not soft-float is set by using the attribute for all of the
target specific test cases - for the generic just go ahead and
add the attribute in the one case that showed up.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@237079 91177308-0d34-0410-b5e6-96231b3b80d8
Add support for having multiple sections with the same name and comdat.
Using this in combination with -ffunction-sections allows LLVM to output a .o
file with mulitple sections named .text. This saves space by avoiding long
unique names of the form .text.<C++ mangled name>.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@229541 91177308-0d34-0410-b5e6-96231b3b80d8
regressions for LLDB on Linux. Rafael indicated on lldb-dev that we
should just go ahead and revert these but that he wasn't at a computer.
The patches backed out are as follows:
r228980: Add support for having multiple sections with the name and ...
r228889: Invert the section relocation map.
r228888: Use the existing SymbolTableIndex intsead of doing a lookup.
r228886: Create the Section -> Rel Section map when it is first needed.
These patches look pretty nice to me, so hoping its not too hard to get
them re-instated. =D
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@229080 91177308-0d34-0410-b5e6-96231b3b80d8
Using this in combination with -ffunction-sections allows LLVM to output a .o
file with mulitple sections named .text. This saves space by avoiding long
unique names of the form .text.<C++ mangled name>.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@228980 91177308-0d34-0410-b5e6-96231b3b80d8
A pass that adds random noops to X86 binaries to introduce diversity with the goal of increasing security against most return-oriented programming attacks.
Command line options:
-noop-insertion // Enable noop insertion.
-noop-insertion-percentage=X // X% of assembly instructions will have a noop prepended (default: 50%, requires -noop-insertion)
-max-noops-per-instruction=X // Randomly generate X noops per instruction. ie. roll the dice X times with probability set above (default: 1). This doesn't guarantee X noop instructions.
In addition, the following 'quick switch' in clang enables basic diversity using default settings (currently: noop insertion and schedule randomization; it is intended to be extended in the future).
-fdiversify
This is the llvm part of the patch.
clang part: D3393
http://reviews.llvm.org/D3392
Patch by Stephen Crane (@rinon)
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@225908 91177308-0d34-0410-b5e6-96231b3b80d8
of the abi we should be using. For targets that don't use the
option there's no change, otherwise this allows external users
to set the ABI via string and avoid some of the -backend-option
pain in clang.
Use this option to move the ABI for the ARM port from the
Subtarget to the TargetMachine and update the testcases
accordingly since it's no longer valid to set via -mattr.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@224492 91177308-0d34-0410-b5e6-96231b3b80d8
This commit adds a new pass that can inject checks before indirect calls to
make sure that these calls target known locations. It supports three types of
checks and, at compile time, it can take the name of a custom function to call
when an indirect call check fails. The default failure function ignores the
error and continues.
This pass incidentally moves the function JumpInstrTables::transformType from
private to public and makes it static (with a new argument that specifies the
table type to use); this is so that the CFI code can transform function types
at call sites to determine which jump-instruction table to use for the check at
that site.
Also, this removes support for jumptables in ARM, pending further performance
analysis and discussion.
Review: http://reviews.llvm.org/D4167
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@221708 91177308-0d34-0410-b5e6-96231b3b80d8
It includes a pass that rewrites all indirect calls to jumptable functions to pass through these tables.
This also adds backend support for generating the jump-instruction tables on ARM and X86.
Note that since the jumptable attribute creates a second function pointer for a
function, any function marked with jumptable must also be marked with unnamed_addr.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@210280 91177308-0d34-0410-b5e6-96231b3b80d8
make the functions to set them non-static.
Move and rename the llvm specific backend options to avoid conflicting
with the clang option.
Paired with a backend commit to update.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@209238 91177308-0d34-0410-b5e6-96231b3b80d8
For now it contains a single flag, SanitizeAddress, which enables
AddressSanitizer instrumentation of inline assembly.
Patch by Yuri Gorshenin.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@206971 91177308-0d34-0410-b5e6-96231b3b80d8
Win64 stack unwinder gets confused when execution flow "falls through" after
a call to 'noreturn' function. This fixes the "missing epilogue" problem by
emitting a trap instruction for IR 'unreachable' on x86_x64-pc-windows.
A secondary use for it would be for anyone wanting to make double-sure that
'noreturn' functions, indeed, do not return.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@206684 91177308-0d34-0410-b5e6-96231b3b80d8
This removes the -segmented-stacks command line flag in favor of a
per-function "split-stack" attribute.
Patch by Luqman Aden and Alex Crichton!
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@205997 91177308-0d34-0410-b5e6-96231b3b80d8
This replaces the old NoIntegratedAssembler with at TargetOption. This is
more flexible and will be used to forward clang's -no-integrated-as option.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@201836 91177308-0d34-0410-b5e6-96231b3b80d8
Function attributes are the future! So just query whether we want to realign the
stack directly from the function instead of through a random target options
structure.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@187618 91177308-0d34-0410-b5e6-96231b3b80d8
There's no need to specify a flag to omit frame pointer elimination on non-leaf
nodes...(Honestly, I can't parse that option out.) Use the function attribute
stuff instead.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@187093 91177308-0d34-0410-b5e6-96231b3b80d8
Use the function attributes to pass along the stack protector buffer size.
Now that we have robust function attributes, don't use a command line option to
specify the stack protecto buffer size.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@186863 91177308-0d34-0410-b5e6-96231b3b80d8
Now that we have robust function attributes, don't use a command line option to
specify the stack protecto buffer size.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@186217 91177308-0d34-0410-b5e6-96231b3b80d8
During LTO, the target options on functions within the same Module may
change. This would necessitate resetting some of the back-end. Do this for X86,
because it's a Friday afternoon.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@178917 91177308-0d34-0410-b5e6-96231b3b80d8
boolean flag to an enum: { Fast, Standard, Strict } (default = Standard).
This option controls the creation by optimizations of fused FP ops that store
intermediate results in higher precision than IEEE allows (E.g. FMAs). The
behavior of this option is intended to match the behaviour specified by a
soon-to-be-introduced frontend flag: '-ffuse-fp-ops'.
Fast mode - allows formation of fused FP ops whenever they're profitable.
Standard mode - allow fusion only for 'blessed' FP ops. At present the only
blessed op is the fmuladd intrinsic. In the future more blessed ops may be
added.
Strict mode - allow fusion only if/when it can be proven that the excess
precision won't effect the result.
Note: This option only controls formation of fused ops by the optimizers. Fused
operations that are explicitly requested (e.g. FMA via the llvm.fma.* intrinsic)
will always be honored, regardless of the value of this option.
Internally TargetOptions::AllowExcessFPPrecision has been replaced by
TargetOptions::AllowFPOpFusion.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@158956 91177308-0d34-0410-b5e6-96231b3b80d8
This patch adds DAG combines to form FMAs from pairs of FADD + FMUL or
FSUB + FMUL. The combines are performed when:
(a) Either
AllowExcessFPPrecision option (-enable-excess-fp-precision for llc)
OR
UnsafeFPMath option (-enable-unsafe-fp-math)
are set, and
(b) TargetLoweringInfo::isFMAFasterThanMulAndAdd(VT) is true for the type of
the FADD/FSUB, and
(c) The FMUL only has one user (the FADD/FSUB).
If your target has fast FMA instructions you can make use of these combines by
overriding TargetLoweringInfo::isFMAFasterThanMulAndAdd(VT) to return true for
types supported by your FMA instruction, and adding patterns to match ISD::FMA
to your FMA instructions.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@158757 91177308-0d34-0410-b5e6-96231b3b80d8
TargetLoweringObjectFileELF. Use this to support it on X86. Unlike ARM,
on X86 it is not easy to find out if .init_array should be used or not, so
the decision is made via TargetOptions and defaults to off.
Add a command line option to llc that enables it.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@158692 91177308-0d34-0410-b5e6-96231b3b80d8
optimizations which are valid for position independent code being linked
into a single executable, but not for such code being linked into
a shared library.
I discussed the design of this with Eric Christopher, and the decision
was to support an optional bit rather than a completely separate
relocation model. Fundamentally, this is still PIC relocation, its just
that certain optimizations are only valid under a PIC relocation model
when the resulting code won't be in a shared library. The simplest path
to here is to expose a single bit option in the TargetOptions. If folks
have different/better designs, I'm all ears. =]
I've included the first optimization based upon this: changing TLS
models to the *Exec models when PIE is enabled. This is the LLVM
component of PR12380 and is all of the hard work.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@154294 91177308-0d34-0410-b5e6-96231b3b80d8