Patch by Kit Barton.
Add the vector count leading zeros instruction for byte, halfword,
word, and doubleword sizes. This is a fairly straightforward addition
after the changes made for vpopcnt:
1. Add the correct definitions for the various instructions in
PPCInstrAltivec.td
2. Make the CTLZ operation legal on vector types when using P8Altivec
in PPCISelLowering.cpp
Test Plan
Created new test case in test/CodeGen/PowerPC/vec_clz.ll to check the
instructions are being generated when the CTLZ operation is used in
LLVM.
Check the encoding and decoding in test/MC/PowerPC/ppc_encoding_vmx.s
and test/Disassembler/PowerPC/ppc_encoding_vmx.txt respectively.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@228301 91177308-0d34-0410-b5e6-96231b3b80d8
This is a bug that was caused due to storing the feature bitset in a 32-bit
variable when it is a 64-bit mask, discarding the top half of the feature set.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@228151 91177308-0d34-0410-b5e6-96231b3b80d8
The ARM assembler allows register alias redefinitions as long as it
targets the same register. r222319 broke that. In the AArch64 case
it would just produce a new warning, but in the ARM case it would
error out on previously accepted assembler.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@228109 91177308-0d34-0410-b5e6-96231b3b80d8
Patch by Kit Barton.
Add the vector population count instructions for byte, halfword, word,
and doubleword sizes. There are two major changes here:
PPCISelLowering.cpp: Make CTPOP legal for vector types.
PPCRegisterInfo.td: Added v2i64 to the VRRC register
definition. This is needed for the doubleword variations of the
integer ops that were added in P8.
Test Plan
Test the instruction vpcnt* encoding/decoding in ppc64-encoding-vmx.s
Test the generation of the vpopcnt instructions for various vector
data types. When adding the v2i64 type to the Vector Register set, I
also needed to add the appropriate bit conversion patterns between
v2i64 and the existing vector types. Testing for these conversions
were also added in the test case by passing a different vector type as
a parameter into the test functions. There is also a run step that
will ensure the vpopcnt instructions are generated when the vsx
feature is disabled.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@228046 91177308-0d34-0410-b5e6-96231b3b80d8
If the original FPU specification involved a restricted VFP unit (d16), ensure
that we reset the functionality when we encounter a new FPU type. In
particular, if the user specified vfpv3-d16, but switched to a VFPv3 (which has
32 double precision registers), we would fail to reset the D16 feature, and
treat it as being equivalent to vfpv3-d16.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@227603 91177308-0d34-0410-b5e6-96231b3b80d8
The FPU directive permits the user to switch the target FPU, enabling
instructions that would be otherwise unavailable. However, when configuring the
new subtarget features, we would not enable the implied functions for newer
FPUs. This would result in invalid rejection of valid input. Ensure that we
inherit the implied FPU functionality when enabling newer versions of the FPU.
Fortunately, these are mostly hierarchical, unlike the CPUs.
Addresses PR22395.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@227584 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
This is needed by the .cprestore assembler directive.
This directive needs to be able to insert an LW instruction after every JALR replacement of a JAL pseudo-instruction
(and never after a JALR which has NOT been a result of a pseudo-instruction replacement).
The problem with using InstAlias for these is that after it replaces the pseudo-instruction, we can't find out if the resulting JALR instruction
was generated by an InstAlias or not, so we don't know whether or not to insert our LW instruction.
By replacing it manually, we know when the pseudo-instruction replacement happens and we can insert the LW instruction correctly.
Reviewers: dsanders
Reviewed By: dsanders
Subscribers: emaste, llvm-commits
Differential Revision: http://reviews.llvm.org/D5601
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@227568 91177308-0d34-0410-b5e6-96231b3b80d8
than on MipsSubtargetInfo.
This required a bit of massaging in the MC level to handle this since
MC is a) largely a collection of disparate classes with no hierarchy,
and b) there's no overarching equivalent to the TargetMachine, instead
only the subtarget via MCSubtargetInfo (which is the base class of
TargetSubtargetInfo).
We're now storing the ABI in both the TargetMachine level and in the
MC level because the AsmParser and the TargetStreamer both need to
know what ABI we have to parse assembly and emit objects. The target
streamer has a pointer to the one in the asm parser and is updated
when the asm parser is created. This is fragile as the FIXME comment
notes, but shouldn't be a problem in practice since we always
create an asm parser before attempting to emit object code via the
assembler. The TargetMachine now contains the ABI so that the DataLayout
can be constructed dependent upon ABI.
All testcases have been updated to use the -target-abi command line
flag so that we can set the ABI without using a subtarget feature.
Should be no change visible externally here.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@227102 91177308-0d34-0410-b5e6-96231b3b80d8
-no-exec-stack. This was due to it not deriving from the correct
asm info base class and missing the override for the exec
stack section query. Added another line to the noexec test
line to make sure this doesn't regress.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@227074 91177308-0d34-0410-b5e6-96231b3b80d8
These tests are asserting and crashing for me, and 'not' sees that as a
non-zero exit code instead of a signal code for obscure Windows reasons.
This causes the test to pass, giving me an unclean 'ninja check'.
The test is already XFAILd, so just run the test without 'not' and let
lit handle the failure.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@226958 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
We used to silently ignore any empty .module's and we used to give an error saying that we found
an "unexpected token at start of statement" when the value of the option wasn't an identifier (e.g. if it was a number).
We now give an error saying that we "expected .module option identifier" in both of those cases.
I also fixed the other tests in mips-abi-bad.s, which all seemed to be broken.
Reviewers: dsanders
Reviewed By: dsanders
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D7095
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@226905 91177308-0d34-0410-b5e6-96231b3b80d8
The ELF format is used on Windows by the MCJIT engine. Thus, on Windows, the
ELFObjectWriter can encounter symbols mangled using the MS Visual Studio C++
name mangling. Symbols mangled using the MSVC C++ name mangling can legally
have "@@@" as a substring. The EFLObjectWriter should not interpret the "@@@"
substring as specifying GNU-style symbol versioning. The ELFObjectWriter
therefore check for the MSVC C++ name mangling prefix which is either "?", "@?",
"imp_?" or "imp_?@".
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@226830 91177308-0d34-0410-b5e6-96231b3b80d8
Windows supports a restricted set of relocations (compared to ARM ELF). In some
cases, we may end up generating an unsupported relocation. This can occur with
bad input to the assembler in particular (the frontend should never generate
code that cannot be compiled). Generate an error rather than just aborting.
The change in the API is driven by the desire to provide a slightly more helpful
message for debugging purposes.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@226779 91177308-0d34-0410-b5e6-96231b3b80d8
Implement microMIPS 16-bit unconditional branch instruction B.
Implemented 16-bit microMIPS unconditional instruction has real name B16, and
B is an alias which expands to either B16 or BEQ according to the rules:
b 256 --> b16 256 # R_MICROMIPS_PC10_S1
b 12256 --> beq $zero, $zero, 12256 # R_MICROMIPS_PC16_S1
b label --> beq $zero, $zero, label # R_MICROMIPS_PC16_S1
Differential Revision: http://reviews.llvm.org/D3514
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@226657 91177308-0d34-0410-b5e6-96231b3b80d8
This makes the assembler check their size and removes a hack from the disassembler to avoid sign extending the immediate.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@226645 91177308-0d34-0410-b5e6-96231b3b80d8
Implement microMIPS 16-bit unconditional branch instruction B.
Implemented 16-bit microMIPS unconditional instruction has real name B16, and
B is an alias which expands to either B16 or BEQ according to the rules:
b 256 --> b16 256 # R_MICROMIPS_PC10_S1
b 12256 --> beq $zero, $zero, 12256 # R_MICROMIPS_PC16_S1
b label --> beq $zero, $zero, label # R_MICROMIPS_PC16_S1
Differential Revision: http://reviews.llvm.org/D3514
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@226577 91177308-0d34-0410-b5e6-96231b3b80d8
This commits adds the octeon branch instructions bbit0/bbit032/bbit1/bbit132.
It also includes patterns for instruction selection and test cases.
Reviewed by D. Sanders
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@226573 91177308-0d34-0410-b5e6-96231b3b80d8
The fixes are to note that AArch64 has additional restrictions on when local
relocations can be used. In particular, ld64 requires that relocations to
cstring/cfstrings use linker visible symbols.
Original message:
In an assembly expression like
bar:
.long L0 + 1
the intended semantics is that bar will contain a pointer one byte past L0.
In sections that are merged by content (strings, 4 byte constants, etc), a
single position in the section doesn't give the linker enough information.
For example, it would not be able to tell a relocation must point to the
end of a string, since that would look just like the start of the next.
The solution used in ELF to use relocation with symbols if there is a non-zero
addend.
In MachO before this patch we would just keep all symbols in some sections.
This would miss some cases (only cstrings on x86_64 were implemented) and was
inefficient since most relocations have an addend of 0 and can be represented
without the symbol.
This patch implements the non-zero addend logic for MachO too.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@226503 91177308-0d34-0410-b5e6-96231b3b80d8
An assignment will produce a symbol with a given section and offset. There is
no way to represent something like "1 byte after a common symbol".
This matches the behavior of GNU as.
Part of PR22217.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@226470 91177308-0d34-0410-b5e6-96231b3b80d8