after the given instruction; make sure to handle that case correctly.
(It's difficult to trigger; the included testcase involves a dead
block, but I don't think that's a requirement.)
While I'm here, get rid of the unnecessary warning about
SimplifyInstructionsInBlock, since it should work correctly as far as I know.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@128782 91177308-0d34-0410-b5e6-96231b3b80d8
When the greedy register allocator is splitting multiple global live ranges, it
tends to look at the same interference data many times. The InterferenceCache
class caches queries for unaltered LiveIntervalUnions.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@128764 91177308-0d34-0410-b5e6-96231b3b80d8
transformations in target-specific DAG combines without causing DAGCombiner to
delete the same node twice. If you know of a better way to avoid this (see my
next patch for an example), please let me know.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@128758 91177308-0d34-0410-b5e6-96231b3b80d8
StringMap was not properly updating NumTombstones after a clear or rehash.
This was not fatal until now because the table was growing faster than
NumTombstones could, but with the previous change of preventing infinite
growth of the table the invariant (NumItems + NumTombstones <= NumBuckets)
stopped being observed, causing infinite loops in certain situations.
Patch by José Fonseca!
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@128567 91177308-0d34-0410-b5e6-96231b3b80d8
When the hash function uses object pointers all free entries eventually
become tombstones as they are used at least once, regardless of the size.
DenseMap cannot function with zero empty keys, so it double size to get
get ridof the tombstones.
However DenseMap never shrinks automatically unless it is cleared, so
the net result is that certain tables grow infinitely.
The solution is to make a fresh copy of the table without tombstones
instead of doubling size, by simply calling grow with the current size.
Patch by José Fonseca!
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@128564 91177308-0d34-0410-b5e6-96231b3b80d8
The idea is, that if an ieee 754 float is divided by a power of two, we can
turn the division into a cheaper multiplication. This function sees if we can
get an exact multiplicative inverse for a divisor and returns it if possible.
This is the hard part of PR9587.
I tested many inputs against llvm-gcc's frotend implementation of this
optimization and didn't find any difference. However, floating point is the
land of weird edge cases, so any review would be appreciated.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@128545 91177308-0d34-0410-b5e6-96231b3b80d8
was lowering them to sext / uxt + mul instructions. Unfortunately the
optimization passes may hoist the extensions out of the loop and separate them.
When that happens, the long multiplication instructions can be broken into
several scalar instructions, causing significant performance issue.
Note the vmla and vmls intrinsics are not added back. Frontend will codegen them
as intrinsics vmull* + add / sub. Also note the isel optimizations for catching
mul + sext / zext are not changed either.
First part of rdar://8832507, rdar://9203134
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@128502 91177308-0d34-0410-b5e6-96231b3b80d8
otool(1), this time with the needed fix for case sensitive file systems :) .
This is a work in progress as the interface for producing symbolic operands is
not done. But a hacked prototype using information from the object file's
relocation entiries and replacing immediate operands with MCExpr's has been
shown to work with no changes to the instrucion printer. These APIs will be
moved into a dynamic library at some point.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@128415 91177308-0d34-0410-b5e6-96231b3b80d8
Correctly terminate the range of register DBG_VALUEs when the register is
clobbered or when the basic block ends.
The code is now ready to deal with variables that are sometimes in a register
and sometimes on the stack. We just need to teach emitDebugLoc to say 'stack
slot'.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@128327 91177308-0d34-0410-b5e6-96231b3b80d8
This is a work in progress as the interface for producing symbolic operands is
not done. But a hacked prototype using information from the object file's
relocation entiries and replacing immediate operands with MCExpr's has been
shown to work with no changes to the instrucion printer. These APIs will be
moved into a dynamic library at some point.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@128308 91177308-0d34-0410-b5e6-96231b3b80d8
The MC asm lexer wasn't honoring a non-default (anything but ';') statement
separator. Fix that, and generalize a bit to support multi-character
statement separators.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@128227 91177308-0d34-0410-b5e6-96231b3b80d8
Move the dynamic linking functionality of the llvm-rtdyld program into an
ExecutionEngine support library. Update llvm-rtdyld to just load an object
file into memory, use the library to process it, then run the _main()
function, if one is found.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@128031 91177308-0d34-0410-b5e6-96231b3b80d8