* Properly compile this:
struct a {};
int test() {
struct a b[2];
if (&b[0] != &b[1])
abort ();
return 0;
}
to 'return 0', not abort().
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@19875 91177308-0d34-0410-b5e6-96231b3b80d8
The second folds operations into selects, e.g. (select C, (X+Y), (Y+Z))
-> (Y+(select C, X, Z)
This occurs a few times across spec, e.g.
select add/sub
mesa: 83 0
povray: 5 2
gcc 4 2
parser 0 22
perlbmk 13 30
twolf 0 3
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@19706 91177308-0d34-0410-b5e6-96231b3b80d8
Disable the xform for < > cases. It turns out that the following is being
miscompiled:
bool %test(sbyte %S) {
%T = cast sbyte %S to uint
%V = setgt uint %T, 255
ret bool %V
}
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@19628 91177308-0d34-0410-b5e6-96231b3b80d8
* We can now fold cast instructions into select instructions that
have at least one constant operand.
* We now optimize expressions more aggressively based on bits that are
known to be zero. These optimizations occur a lot in code that uses
bitfields even in simple ways.
* We now turn more cast-cast sequences into AND instructions. Before we
would only do this if it if all types were unsigned. Now only the
middle type needs to be unsigned (guaranteeing a zero extend).
* We transform sign extensions into zero extensions in several cases.
This corresponds to these test/Regression/Transforms/InstCombine testcases:
2004-11-22-Missed-and-fold.ll
and.ll: test28-29
cast.ll: test21-24
and-or-and.ll
cast-cast-to-and.ll
zeroext-and-reduce.ll
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@19220 91177308-0d34-0410-b5e6-96231b3b80d8
SimplifyCFG is one of those passes that we use for final cleanup: it should
not rely on other passes to clean up its garbage. This fixes the "why are
trivially dead setcc's in the output of gccas" problem.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@19212 91177308-0d34-0410-b5e6-96231b3b80d8
do not insert a prototype for malloc of: void* malloc(uint): on 64-bit u
targets this is not correct. Instead of prototype it as void *malloc(...),
and pass the correct intptr_t through the "...".
Finally, fix Regression/CodeGen/SparcV9/2004-12-13-MallocCrash.ll, by not
forming constantexpr casts from pointer to uint.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@18908 91177308-0d34-0410-b5e6-96231b3b80d8
in SPEC, the subsequent optimziations that we are after don't play with
with FP values, so disable this xform for them. Really we just don't want
stuff like:
double G; (always 0 or 412312.312)
= G;
turning into:
bool G_b;
= G_b ? 412312.312 : 0;
We'd rather just do the load.
-Chris
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@18819 91177308-0d34-0410-b5e6-96231b3b80d8
down to actually BE a bool. This allows simple value range propagation
stuff work harder, deleting comparisons in bzip2 in some hot loops.
This implements GlobalOpt/integer-bool.ll, which is the essence of the
loop condition distilled into a testcase.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@18817 91177308-0d34-0410-b5e6-96231b3b80d8
if the other side is overdefined.
This allows us to fold conditions like: if (X < Y || Y > Z) in some cases.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@18807 91177308-0d34-0410-b5e6-96231b3b80d8
1. Actually increment the Statistic for the GV elim optzn
2. When resolving undef branches, only resolve branches in executable blocks,
avoiding marking a bunch of completely dead blocks live. This has a big
impact on the quality of the generated code.
With this patch, we positively rip up vortex, compiling Ut_MoveBytes to a
single memcpy call. In vortex we get this:
12 ipsccp - Number of globals found to be constant
986 ipsccp - Number of arguments constant propagated
1378 ipsccp - Number of basic blocks unreachable
8919 ipsccp - Number of instructions removed
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@18796 91177308-0d34-0410-b5e6-96231b3b80d8