Now that the PowerPC backend can track individual CR bits as first-class
registers, we should also have a way of allocating them for inline asm
statements. Because these registers are only one bit, if an output variable is
implicitly cast to a larger integer size, we'll get an any_extend to that
larger type (this is part of the existing target-independent logic). As a
result, regardless of the size of the output type, only the first bit is
meaningful.
The constraint identifier "wc" has been chosen for this purpose. Although gcc
does not currently support allocating individual CR bits, this identifier
choice has been coordinated with the gcc PowerPC team, and will be marked as
reserved for this purpose in the gcc constraints.md file.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@202657 91177308-0d34-0410-b5e6-96231b3b80d8
This generalizes the code to eliminate extra truncs/exts around i1 bit
operations to also do the same on PPC64 for i32 bit operations. This eliminates
a fairly prevalent code wart:
int foo(int a) {
return a == 5 ? 7 : 8;
}
On PPC64, because of the extension implied by the ABI, this would generate:
cmplwi 0, 3, 5
li 12, 8
li 4, 7
isel 3, 4, 12, 2
rldicl 3, 3, 0, 32
blr
where the 'rldicl 3, 3, 0, 32', the extension, is completely unnecessary. At
least for the single-BB case (which is all that the DAG combine mechanism can
handle), this unnecessary extension is no longer generated.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@202600 91177308-0d34-0410-b5e6-96231b3b80d8
Inside iterate, we scan backwards then scan forwards in a loop. When iteration
is not zero, the last node was just updated so we can skip it. But when
iteration is zero, we can't skip the last node.
For the testing case, fixing this will save a spill and move register copies
from hot path to cold path.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@202557 91177308-0d34-0410-b5e6-96231b3b80d8
Tools that use the CommandLine library currently exit with an error
when invoked with -version or -help. This is unusual and non-standard,
so we'll fix them to exit successfully instead.
I don't expect that anyone relies on the current behaviour, so this
should be a fairly safe change.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@202530 91177308-0d34-0410-b5e6-96231b3b80d8
The PPC isel instruction can fold 0 into the first operand (thus eliminating
the need to materialize a zero-containing register when the 'true' result of
the isel is 0). When the isel is fed by a bit register operation that we can
invert, do so as part of the bit-register-operation peephole routine.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@202469 91177308-0d34-0410-b5e6-96231b3b80d8
This change enables tracking i1 values in the PowerPC backend using the
condition register bits. These bits can be treated on PowerPC as separate
registers; individual bit operations (and, or, xor, etc.) are supported.
Tracking booleans in CR bits has several advantages:
- Reduction in register pressure (because we no longer need GPRs to store
boolean values).
- Logical operations on booleans can be handled more efficiently; we used to
have to move all results from comparisons into GPRs, perform promoted
logical operations in GPRs, and then move the result back into condition
register bits to be used by conditional branches. This can be very
inefficient, because the throughput of these CR <-> GPR moves have high
latency and low throughput (especially when other associated instructions
are accounted for).
- On the POWER7 and similar cores, we can increase total throughput by using
the CR bits. CR bit operations have a dedicated functional unit.
Most of this is more-or-less mechanical: Adjustments were needed in the
calling-convention code, support was added for spilling/restoring individual
condition-register bits, and conditional branch instruction definitions taking
specific CR bits were added (plus patterns and code for generating bit-level
operations).
This is enabled by default when running at -O2 and higher. For -O0 and -O1,
where the ability to debug is more important, this feature is disabled by
default. Individual CR bits do not have assigned DWARF register numbers,
and storing values in CR bits makes them invisible to the debugger.
It is critical, however, that we don't move i1 values that have been promoted
to larger values (such as those passed as function arguments) into bit
registers only to quickly turn around and move the values back into GPRs (such
as happens when values are returned by functions). A pair of target-specific
DAG combines are added to remove the trunc/extends in:
trunc(binary-ops(binary-ops(zext(x), zext(y)), ...)
and:
zext(binary-ops(binary-ops(trunc(x), trunc(y)), ...)
In short, we only want to use CR bits where some of the i1 values come from
comparisons or are used by conditional branches or selects. To put it another
way, if we can do the entire i1 computation in GPRs, then we probably should
(on the POWER7, the GPR-operation throughput is higher, and for all cores, the
CR <-> GPR moves are expensive).
POWER7 test-suite performance results (from 10 runs in each configuration):
SingleSource/Benchmarks/Misc/mandel-2: 35% speedup
MultiSource/Benchmarks/Prolangs-C++/city/city: 21% speedup
MultiSource/Benchmarks/MiBench/automotive-susan: 23% speedup
SingleSource/Benchmarks/CoyoteBench/huffbench: 13% speedup
SingleSource/Benchmarks/Misc-C++/Large/sphereflake: 13% speedup
SingleSource/Benchmarks/Misc-C++/mandel-text: 10% speedup
SingleSource/Benchmarks/Misc-C++-EH/spirit: 10% slowdown
MultiSource/Applications/lemon/lemon: 8% slowdown
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@202451 91177308-0d34-0410-b5e6-96231b3b80d8
expensive libcall. Also, Qp_neg is not implemented on at least
FreeBSD. This is also what gcc is doing.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@202422 91177308-0d34-0410-b5e6-96231b3b80d8
scan the register file for sub- and super-registers.
No functionality change intended.
(Tests are updated because the comments in the assembler output are
different.)
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@202416 91177308-0d34-0410-b5e6-96231b3b80d8
If a function returns a large struct by value return the first 4 words
in registers and the rest on the stack in a location reserved by the
caller. This is needed to support the xC language which supports
functions returning an arbitrary number of return values. This is
r202397 reapplied with a fix to avoid an uninitialized read of a member.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@202414 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
If a function returns a large struct by value return the first 4 words
in registers and the rest on the stack in a location reserved by the
caller. This is needed to support the xC language which supports
functions returning an arbitrary number of return values.
Reviewers: robertlytton
Reviewed By: robertlytton
CC: llvm-commits
Differential Revision: http://llvm-reviews.chandlerc.com/D2889
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@202397 91177308-0d34-0410-b5e6-96231b3b80d8
These instructions ignore the high bits of one of their input operands -
try and use this to simplify the code.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@202394 91177308-0d34-0410-b5e6-96231b3b80d8