we do not use the information from SCEVAddRecExpr to compute the shape of the array,
so a better place for this function is in ScalarEvolution.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@208456 91177308-0d34-0410-b5e6-96231b3b80d8
Sorry for the commit spam. My clang-format crashed on me and the vim
plugin did not print an error, but instead just left the formatting
untouched.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@208358 91177308-0d34-0410-b5e6-96231b3b80d8
To compute the dimensions of the array in a unique way, we split the
delinearization analysis in three steps:
- find parametric terms in all memory access functions
- compute the array dimensions from the set of terms
- compute the delinearized access functions for each dimension
The first step is executed on all the memory access functions such that we
gather all the patterns in which an array is accessed. The second step reduces
all this information in a unique description of the sizes of the array. The
third step is delinearizing each memory access function following the common
description of the shape of the array computed in step 2.
This rewrite of the delinearization pass also solves a problem we had with the
previous implementation: because the previous algorithm was by induction on the
structure of the SCEV, it would not correctly recognize the shape of the array
when the memory access was not following the nesting of the loops: for example,
see polly/test/ScopInfo/multidim_only_ivs_3d_reverse.ll
; void foo(long n, long m, long o, double A[n][m][o]) {
;
; for (long i = 0; i < n; i++)
; for (long j = 0; j < m; j++)
; for (long k = 0; k < o; k++)
; A[i][k][j] = 1.0;
Starting with this patch we no longer delinearize access functions that do not
contain parameters, for example in test/Analysis/DependenceAnalysis/GCD.ll
;; for (long int i = 0; i < 100; i++)
;; for (long int j = 0; j < 100; j++) {
;; A[2*i - 4*j] = i;
;; *B++ = A[6*i + 8*j];
these accesses will not be delinearized as the upper bound of the loops are
constants, and their access functions do not contain SCEVUnknown parameters.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@208232 91177308-0d34-0410-b5e6-96231b3b80d8
definition below all the header #include lines, lib/Analysis/...
edition.
This one has a bit extra as there were *other* #define's before #include
lines in addition to DEBUG_TYPE. I've sunk all of them as a block.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@206843 91177308-0d34-0410-b5e6-96231b3b80d8
If we have a loop of the form
for (unsigned n = 0; n != (k & -32); n += 32) {}
then we know that n is always divisible by 32 and the loop must
terminate. Even if we have a condition where the loop counter will
overflow it'll always hold this invariant.
PR19183. Our loop vectorizer creates this pattern and it's also
occasionally formed by loop counters derived from pointers.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@204728 91177308-0d34-0410-b5e6-96231b3b80d8
This requires a number of steps.
1) Move value_use_iterator into the Value class as an implementation
detail
2) Change it to actually be a *Use* iterator rather than a *User*
iterator.
3) Add an adaptor which is a User iterator that always looks through the
Use to the User.
4) Wrap these in Value::use_iterator and Value::user_iterator typedefs.
5) Add the range adaptors as Value::uses() and Value::users().
6) Update *all* of the callers to correctly distinguish between whether
they wanted a use_iterator (and to explicitly dig out the User when
needed), or a user_iterator which makes the Use itself totally
opaque.
Because #6 requires churning essentially everything that walked the
Use-Def chains, I went ahead and added all of the range adaptors and
switched them to range-based loops where appropriate. Also because the
renaming requires at least churning every line of code, it didn't make
any sense to split these up into multiple commits -- all of which would
touch all of the same lies of code.
The result is still not quite optimal. The Value::use_iterator is a nice
regular iterator, but Value::user_iterator is an iterator over User*s
rather than over the User objects themselves. As a consequence, it fits
a bit awkwardly into the range-based world and it has the weird
extra-dereferencing 'operator->' that so many of our iterators have.
I think this could be fixed by providing something which transforms
a range of T&s into a range of T*s, but that *can* be separated into
another patch, and it isn't yet 100% clear whether this is the right
move.
However, this change gets us most of the benefit and cleans up
a substantial amount of code around Use and User. =]
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@203364 91177308-0d34-0410-b5e6-96231b3b80d8
a bit surprising, as the class is almost entirely abstracted away from
any particular IR, however it encodes the comparsion predicates which
mutate ranges as ICmp predicate codes. This is reasonable as they're
used for both instructions and constants. Thus, it belongs in the IR
library with instructions and constants.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@202838 91177308-0d34-0410-b5e6-96231b3b80d8
name might indicate, it is an iterator over the types in an instruction
in the IR.... You see where this is going.
Another step of modularizing the support library.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@202815 91177308-0d34-0410-b5e6-96231b3b80d8
business.
This header includes Function and BasicBlock and directly uses the
interfaces of both classes. It has to do with the IR, it even has that
in the name. =] Put it in the library it belongs to.
This is one step toward making LLVM's Support library survive a C++
modules bootstrap.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@202814 91177308-0d34-0410-b5e6-96231b3b80d8
Instead, have a DataLayoutPass that holds one. This will allow parts of LLVM
don't don't handle passes to also use DataLayout.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@202168 91177308-0d34-0410-b5e6-96231b3b80d8
Unfortunately, this in turn led to some lower quality SCEVs due to some different paths through expression simplification, so add getUDivExactExpr and use it. This fixes all instances of the problems that I found, but we can make that function smarter as necessary.
Merge test "xor-and.ll" into "and-xor.ll" since I needed to update it anyways. Test 'nsw-offset.ll' analyzes a little deeper, %n now gets a scev in terms of %no instead of a SCEVUnknown.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@200203 91177308-0d34-0410-b5e6-96231b3b80d8
Sweep the codebase for common typos. Includes some changes to visible function
names that were misspelt.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@200018 91177308-0d34-0410-b5e6-96231b3b80d8
can be used by both the new pass manager and the old.
This removes it from any of the virtual mess of the pass interfaces and
lets it derive cleanly from the DominatorTreeBase<> template. In turn,
tons of boilerplate interface can be nuked and it turns into a very
straightforward extension of the base DominatorTree interface.
The old analysis pass is now a simple wrapper. The names and style of
this split should match the split between CallGraph and
CallGraphWrapperPass. All of the users of DominatorTree have been
updated to match using many of the same tricks as with CallGraph. The
goal is that the common type remains the resulting DominatorTree rather
than the pass. This will make subsequent work toward the new pass
manager significantly easier.
Also in numerous places things became cleaner because I switched from
re-running the pass (!!! mid way through some other passes run!!!) to
directly recomputing the domtree.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@199104 91177308-0d34-0410-b5e6-96231b3b80d8
directory. These passes are already defined in the IR library, and it
doesn't make any sense to have the headers in Analysis.
Long term, I think there is going to be a much better way to divide
these matters. The dominators code should be fully separated into the
abstract graph algorithm and have that put in Support where it becomes
obvious that evn Clang's CFGBlock's can use it. Then the verifier can
manually construct dominance information from the Support-driven
interface while the Analysis library can provide a pass which both
caches, reconstructs, and supports a nice update API.
But those are very long term, and so I don't want to leave the really
confusing structure until that day arrives.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@199082 91177308-0d34-0410-b5e6-96231b3b80d8
operand into the Value interface just like the core print method is.
That gives a more conistent organization to the IR printing interfaces
-- they are all attached to the IR objects themselves. Also, update all
the users.
This removes the 'Writer.h' header which contained only a single function
declaration.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@198836 91177308-0d34-0410-b5e6-96231b3b80d8
are part of the core IR library in order to support dumping and other
basic functionality.
Rename the 'Assembly' include directory to 'AsmParser' to match the
library name and the only functionality left their -- printing has been
in the core IR library for quite some time.
Update all of the #includes to match.
All of this started because I wanted to have the layering in good shape
before I started adding support for printing LLVM IR using the new pass
infrastructure, and commandline support for the new pass infrastructure.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@198688 91177308-0d34-0410-b5e6-96231b3b80d8
Patch by Michele Scandale!
Rewrite of the functions used to compute the backedge taken count of a
loop on LT and GT comparisons.
I decided to split the handling of LT and GT cases becasue the trick
"a > b == -a < -b" in some cases prevents the trip count computation
due to the multiplication by -1 on the two operands of the
comparison. This issue comes from the conservative computation of
value range of SCEVs: taking the negative SCEV of an expression that
have a small positive range (e.g. [0,31]), we would have a SCEV with a
fullset as value range.
Indeed, in the new rewritten function I tried to better handle the
maximum backedge taken count computation when MAX/MIN expression are
used to handle the cases where no entry guard is found.
Some test have been modified in order to check the new value correctly
(I manually check them and reasoning on possible overflow the new
values seem correct).
I finally added a new test case related to the multiplication by -1
issue on GT comparisons.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@194116 91177308-0d34-0410-b5e6-96231b3b80d8
We can't do this for the general case as saying a GEP with a negative index
doesn't have unsigned wrap isn't valid for negative indices.
%gep = getelementptr inbounds i32* %p, i64 -1
But an inbounds GEP cannot run past the end of address space. So we check for
the very common case of a positive index and make GEPs derived from that NUW.
Together with Andy's recent non-unit stride work this lets us analyze loops
like
void foo3(int *a, int *b) {
for (; a < b; a++) {}
}
PR12375, PR12376.
Differential Revision: http://llvm-reviews.chandlerc.com/D2033
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@193514 91177308-0d34-0410-b5e6-96231b3b80d8
The test before wasn't successfully testing this
since it was missing the datalayout piece to change
the size of the second address space.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@193102 91177308-0d34-0410-b5e6-96231b3b80d8
SCEV currently fails to compute loop counts for nonunit stride
loops. This comes up frequently. It prevents loop optimization and
forces vectorization to insert extra loop checks.
For example:
void foo(int n, int *x) {
for (int i = 0; i < n; i += 3) {
x[i] = i;
x[i+1] = i+1;
x[i+2] = i+2;
}
}
We need to properly handle the case in which limit > INT_MAX-stride. In
the above case: n > INT_MAX-3. In this case the loop counter will step
beyond the limit and overflow at the same time. However, knowing that
signed integer overlow in undefined, we can assume the loop test
behavior is arbitrary after overflow. This obeys both C undefined
behavior rules, and the more strict LLVM poison value rules.
I'm finally fixing this in response to Hal Finkel's persistence.
The most probable reason that we never optimized this before is that
we were being careful to handle case where the developer expected a
side-effect free infinite loop relying on overflow:
for (int i = 0; i < n; i += s) {
++j;
}
return j;
If INT_MAX+1 is a multiple of s and n > INT_MAX-s, then we might
expect an infinite loop. However there are plenty of ways to achieve
this effect without relying on undefined behavior of signed overflow.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@193015 91177308-0d34-0410-b5e6-96231b3b80d8