AAPCS64 says that it's up to the platform to specify whether x18 is
reserved, and a first step on that way is to add a flag controlling
it.
From: Andrew Turner <andrew@fubar.geek.nz>
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@226664 91177308-0d34-0410-b5e6-96231b3b80d8
Previously we always stored 4 bytes of origin at the destination address
even for 8-byte (and longer) stores.
This should fix rare missing, or incorrect, origin stacks in MSan reports.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@226658 91177308-0d34-0410-b5e6-96231b3b80d8
Implement microMIPS 16-bit unconditional branch instruction B.
Implemented 16-bit microMIPS unconditional instruction has real name B16, and
B is an alias which expands to either B16 or BEQ according to the rules:
b 256 --> b16 256 # R_MICROMIPS_PC10_S1
b 12256 --> beq $zero, $zero, 12256 # R_MICROMIPS_PC16_S1
b label --> beq $zero, $zero, label # R_MICROMIPS_PC16_S1
Differential Revision: http://reviews.llvm.org/D3514
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@226657 91177308-0d34-0410-b5e6-96231b3b80d8
Because in its primary function pass the combiner is run repeatedly over
the same function until doing so produces no changes, it is essentially
to not re-allocate the worklist. However, as a utility, the more common
pattern would be to put a limited set of instructions in the worklist
rather than the entire function body. That is also the more likely
pattern when used by the new pass manager.
The result is a very light weight combiner that does the visiting with
a separable worklist. This can then be wrapped up in a helper function
for users that want a combiner utility, or as I have here it can be
wrapped up in a pass which manages the iterations used when combining an
entire function's instructions.
Hopefully this removes some of the worst of the interface warts that
became apparant with the last patch here. However, there is clearly more
work. I've again left some FIXMEs for the most egregious. The ones that
stick out to me are the exposure of the worklist and IR builder as
public members, and the use of pointers rather than references. However,
fixing these is likely to be much more mechanical and less interesting
so I didn't want to touch them in this patch.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@226655 91177308-0d34-0410-b5e6-96231b3b80d8
SimplifyLibCalls utility by sinking it into the specific call part of
the combiner.
This will avoid us needing to do any contortions to build this object in
a subsequent refactoring I'm doing and seems generally better factored.
We don't need this utility everywhere and it carries no interesting
state so we might as well build it on demand.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@226654 91177308-0d34-0410-b5e6-96231b3b80d8
This makes the assembler check their size and removes a hack from the disassembler to avoid sign extending the immediate.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@226645 91177308-0d34-0410-b5e6-96231b3b80d8
a more direct approach: a type-erased glorified function pointer. Now we
can pass a function pointer into this for the easy case and we can even
pass a lambda into it in the interesting case in the instruction
combiner.
I'll be using this shortly to simplify the interfaces to InstCombiner,
but this helps pave the way and seems like a better design for the
libcall simplifier utility.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@226640 91177308-0d34-0410-b5e6-96231b3b80d8
This creates a small internal pass which runs the InstCombiner over
a function. This is the hard part of porting InstCombine to the new pass
manager, as at this point none of the code in InstCombine has access to
a Pass object any longer.
The resulting interface for the InstCombiner is pretty terrible. I'm not
planning on leaving it that way. The key thing missing is that we need
to separate the worklist from the combiner a touch more. Once that's
done, it should be possible for *any* part of LLVM to just create
a worklist with instructions, populate it, and then combine it until
empty. The pass will just be the (obvious and important) special case of
doing that for an entire function body.
For now, this is the first increment of factoring to make all of this
work.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@226618 91177308-0d34-0410-b5e6-96231b3b80d8
don't get muddied up by formatting changes.
Some of these don't really seem like improvements to me, but they also
don't seem any worse and I care much more about not formatting them
manually than I do about the particular formatting. =]
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@226610 91177308-0d34-0410-b5e6-96231b3b80d8
This addresses part of llvm.org/PR22262. Specifically, it prevents
considering the densities of sub-ranges that have fewer than
TLI.getMinimumJumpTableEntries() elements. Those densities won't help
jump tables.
This is not a complete solution but works around the most pressing
issue.
Review: http://reviews.llvm.org/D7070
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@226600 91177308-0d34-0410-b5e6-96231b3b80d8
With the appropriate Verifier changes, exactracting the result out of a
statepoint wrapping a vararg function crashes. However, a void vararg
function works fine: commit this first step.
Differential Revision: http://reviews.llvm.org/D7071
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@226599 91177308-0d34-0410-b5e6-96231b3b80d8
This reapplies r225379.
ChangeLog:
- The assertion that this commit previously ran into about the inability
to handle indirect variables has since been removed and the backend
can handle this now.
- Testcases were upgrade to the new MDLocation format.
- Instead of keeping a DebugDeclares map, we now use
llvm::FindAllocaDbgDeclare().
Original commit message follows.
Debug info: Teach SROA how to update debug info for fragmented variables.
This allows us to generate debug info for extremely advanced code such as
typedef struct { long int a; int b;} S;
int foo(S s) {
return s.b;
}
which at -O1 on x86_64 is codegen'd into
define i32 @foo(i64 %s.coerce0, i32 %s.coerce1) #0 {
ret i32 %s.coerce1, !dbg !24
}
with this patch we emit the following debug info for this
TAG_formal_parameter [3]
AT_location( 0x00000000
0x0000000000000000 - 0x0000000000000006: rdi, piece 0x00000008, rsi, piece 0x00000004
0x0000000000000006 - 0x0000000000000008: rdi, piece 0x00000008, rax, piece 0x00000004 )
AT_name( "s" )
AT_decl_file( "/Volumes/Data/llvm/_build.ninja.release/test.c" )
Thanks to chandlerc, dblaikie, and echristo for their feedback on all
previous iterations of this patch!
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@226598 91177308-0d34-0410-b5e6-96231b3b80d8
ConstantArrays constructed during linking can cause quadratic memory
explosion. An example is the ConstantArrays constructed when linking in
GlobalVariables with appending linkage.
Releasing all unused constants can cause a 20% LTO compile-time
slowdown for a large application. So this commit releases unused ConstantArrays
only.
rdar://19040716. It reduces memory footprint from 20+G to 6+G.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@226592 91177308-0d34-0410-b5e6-96231b3b80d8
We were passing the scratch buffer address to the shaders via user sgprs,
but now we use external symbols and have the driver patch the shader
using reloc information.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@226586 91177308-0d34-0410-b5e6-96231b3b80d8
We don't have a good way of legalizing this if the frame index offset
is more than the 12-bits, which is size of MUBUF's offset field, so
now we store the frame index in the vaddr field.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@226584 91177308-0d34-0410-b5e6-96231b3b80d8
Implement microMIPS 16-bit unconditional branch instruction B.
Implemented 16-bit microMIPS unconditional instruction has real name B16, and
B is an alias which expands to either B16 or BEQ according to the rules:
b 256 --> b16 256 # R_MICROMIPS_PC10_S1
b 12256 --> beq $zero, $zero, 12256 # R_MICROMIPS_PC16_S1
b label --> beq $zero, $zero, label # R_MICROMIPS_PC16_S1
Differential Revision: http://reviews.llvm.org/D3514
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@226577 91177308-0d34-0410-b5e6-96231b3b80d8
This commits adds the octeon branch instructions bbit0/bbit032/bbit1/bbit132.
It also includes patterns for instruction selection and test cases.
Reviewed by D. Sanders
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@226573 91177308-0d34-0410-b5e6-96231b3b80d8
The new code does not create new basic blocks in the case when shadow is a
compile-time constant; it generates either an unconditional __msan_warning
call or nothing instead.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@226569 91177308-0d34-0410-b5e6-96231b3b80d8
pass and a LoopPrinterPass with the expected associated wiring.
I've added a RUN line to the only test case (!!!) we have that actually
prints loops. Everything seems to be working.
This is somewhat exciting as this is the first analysis using another
analysis to go in for the new pass manager. =D I also believe it is the
last analysis necessary for porting instcombine, but of course I may yet
discover more.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@226560 91177308-0d34-0410-b5e6-96231b3b80d8
This is in preparation for a fix to llvm.org/PR22262. One of the ideas
here is to first find a good jump table range first and then split
before and after it. Thereby, we don't need to use the
split-based-on-density heuristic at all, which can make the "binary
tree" deteriorate in various cases.
Also some minor cleanups.
No functional changes.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@226551 91177308-0d34-0410-b5e6-96231b3b80d8
along with the other analyses.
The most obvious reason why is because eventually I need to separate out
the pass layer from the rest of the instcombiner. However, it is also
probably a compile time win as every query through the pass manager
layer is pretty slow these days.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@226550 91177308-0d34-0410-b5e6-96231b3b80d8
This patch fixes 2 issues in reorderInputsAccordingToOpcode
1) AllSameOpcodeLeft and AllSameOpcodeRight was being calculated incorrectly resulting in code not being vectorized in few cases.
2) Adds logic to reorder operands if we get longer chain of consecutive loads enabling vectorization. Handled the same for cases were we have AltOpcode.
Thanks Michael for inputs and review.
Review: http://reviews.llvm.org/D6677
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@226547 91177308-0d34-0410-b5e6-96231b3b80d8
This reverts commit r226542, effectively reapplying r226540. This time,
initialize `IsEmpty` in the copy and move constructors as well.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@226545 91177308-0d34-0410-b5e6-96231b3b80d8
Now that the clone methods used by `MapMetadata()` don't do any
remapping (and return a temporary), they make more sense as member
functions on `MDNode` (and subclasses).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@226541 91177308-0d34-0410-b5e6-96231b3b80d8
Change `HeaderBuilder` API to work well even when it's not starting with
a tag. There's already one case like this, and the tag is moving
elsewhere as part of PR22235.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@226540 91177308-0d34-0410-b5e6-96231b3b80d8