- Find a legal vector type before casting and extracting element from it.
- As the new vector type may have more than 2 elements, build the final
hi/lo pair by BFS pairing them from bottom to top.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@163830 91177308-0d34-0410-b5e6-96231b3b80d8
by xoring the high-bit. This fails if the source operand is a vector because we need to negate
each of the elements in the vector.
Fix rdar://12281066 PR13813.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@163802 91177308-0d34-0410-b5e6-96231b3b80d8
- BlockAddress has no support of BA + offset form and there is no way to
propagate that offset into machine operand;
- Add BA + offset support and a new interface 'getTargetBlockAddress' to
simplify target block address forming;
- All targets are modified to use new interface and X86 backend is enhanced to
support BA + offset addressing.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@163743 91177308-0d34-0410-b5e6-96231b3b80d8
SelectionDAG::getConstantFP(double Val, EVT VT, bool isTarget);
should not be used when Val is not a simple constant (as the comment in
SelectionDAG.h indicates). This patch avoids using this function
when folding an unknown constant through a bitcast, where it cannot be
guaranteed that Val will be a simple constant.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@163703 91177308-0d34-0410-b5e6-96231b3b80d8
This folding happens as early as possible for performance reasons, and to make sure it isn't foiled by other transforms (e.g. forming FMAs).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@163519 91177308-0d34-0410-b5e6-96231b3b80d8
- CodeGenPrepare pass for identifying div/rem ops
- Backend specifies the type mapping using addBypassSlowDivType
- Enabled only for Intel Atom with O2 32-bit -> 8-bit
- Replace IDIV with instructions which test its value and use DIVB if the value
is positive and less than 256.
- In the case when the quotient and remainder of a divide are used a DIV
and a REM instruction will be present in the IR. In the non-Atom case
they are both lowered to IDIVs and CSE removes the redundant IDIV instruction,
using the quotient and remainder from the first IDIV. However,
due to this optimization CSE is not able to eliminate redundant
IDIV instructions because they are located in different basic blocks.
This is overcome by calculating both the quotient (DIV) and remainder (REM)
in each basic block that is inserted by the optimization and reusing the result
values when a subsequent DIV or REM instruction uses the same operands.
- Test cases check for the presents of the optimization when calculating
either the quotient, remainder, or both.
Patch by Tyler Nowicki!
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@163150 91177308-0d34-0410-b5e6-96231b3b80d8
No test case unfortunately as i couldn't find a target which fit all
the conditions needed to hit this code.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@163075 91177308-0d34-0410-b5e6-96231b3b80d8
This reverts commit 5dd9e214fb92847e947f9edab170f9b4e52b908f.
Thanks to Duncan for explaining how this should have been done.
Conflicts:
test/CodeGen/X86/vec_select.ll
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@163064 91177308-0d34-0410-b5e6-96231b3b80d8
Manage tied operands entirely internally to MachineInstr. This makes it
possible to change the representation of tied operands, as I will do
shortly.
The constraint that tied uses and defs must be in the same order was too
restrictive.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@163021 91177308-0d34-0410-b5e6-96231b3b80d8
I was too optimistic, inline asm can have tied operands that don't
follow the def order.
Fixes PR13742.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@162998 91177308-0d34-0410-b5e6-96231b3b80d8
because it does not support CMOV of vectors. To implement this efficientlyi, we broadcast the condition bit and use a sequence of NAND-OR
to select between the two operands. This is the same sequence we use for targets that don't have vector BLENDs (like SSE2).
rdar://12201387
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@162926 91177308-0d34-0410-b5e6-96231b3b80d8
When there are multiple tied use-def pairs on an inline asm instruction,
the tied uses must appear in the same order as the defs.
It is possible to write an LLVM IR inline asm instruction that breaks
this constraint, but there is no reason for a front end to emit the
operands out of order.
The gnu inline asm syntax specifies tied operands as a single read/write
constraint "+r", so ouf of order operands are not possible.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@162878 91177308-0d34-0410-b5e6-96231b3b80d8
For normal instructions, isTied() is set automatically by addOperand(),
based on MCInstrDesc, but inline asm has tied operands outside the
descriptor.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@162869 91177308-0d34-0410-b5e6-96231b3b80d8
These extra flags are not required to properly order the atomic
load/store instructions. SelectionDAGBuilder chains atomics as if they
were volatile, and SelectionDAG::getAtomic() sets the isVolatile bit on
the memory operands of all atomic operations.
The volatile bit is enough to order atomic loads and stores during and
after SelectionDAG.
This means we set mayLoad on atomic_load, mayStore on atomic_store, and
mayLoad+mayStore on the remaining atomic read-modify-write operations.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@162733 91177308-0d34-0410-b5e6-96231b3b80d8
In SelectionDAGLegalize::ExpandLegalINT_TO_FP, expand INT_TO_FP nodes without
using any f64 operations if f64 is not a legal type.
Patch by Stefan Kristiansson.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@162728 91177308-0d34-0410-b5e6-96231b3b80d8
It is legal to have a register node as an explicit operand, it shouldn't
be counted as an implicit use.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@162591 91177308-0d34-0410-b5e6-96231b3b80d8
the case of multiple edges from one block to another.
A simple example is a switch statement with multiple values to the same
destination. The definition of an edge is modified from a pair of blocks to
a pair of PredBlock and an index into the successors.
Also set the weight correctly when building SelectionDAG from LLVM IR,
especially when converting a Switch.
IntegersSubsetMapping is updated to calculate the weight for each cluster.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@162572 91177308-0d34-0410-b5e6-96231b3b80d8