This adds a loop rerolling pass: the opposite of (partial) loop unrolling. The
transformation aims to take loops like this:
for (int i = 0; i < 3200; i += 5) {
a[i] += alpha * b[i];
a[i + 1] += alpha * b[i + 1];
a[i + 2] += alpha * b[i + 2];
a[i + 3] += alpha * b[i + 3];
a[i + 4] += alpha * b[i + 4];
}
and turn them into this:
for (int i = 0; i < 3200; ++i) {
a[i] += alpha * b[i];
}
and loops like this:
for (int i = 0; i < 500; ++i) {
x[3*i] = foo(0);
x[3*i+1] = foo(0);
x[3*i+2] = foo(0);
}
and turn them into this:
for (int i = 0; i < 1500; ++i) {
x[i] = foo(0);
}
There are two motivations for this transformation:
1. Code-size reduction (especially relevant, obviously, when compiling for
code size).
2. Providing greater choice to the loop vectorizer (and generic unroller) to
choose the unrolling factor (and a better ability to vectorize). The loop
vectorizer can take vector lengths and register pressure into account when
choosing an unrolling factor, for example, and a pre-unrolled loop limits that
choice. This is especially problematic if the manual unrolling was optimized
for a machine different from the current target.
The current implementation is limited to single basic-block loops only. The
rerolling recognition should work regardless of how the loop iterations are
intermixed within the loop body (subject to dependency and side-effect
constraints), but the significant restriction is that the order of the
instructions in each iteration must be identical. This seems sufficient to
capture all current use cases.
This pass is not currently enabled by default at any optimization level.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@194939 91177308-0d34-0410-b5e6-96231b3b80d8
...so that it can be used for z too. Most of the code is the same.
The only real change is to use TargetTransformInfo to test when a sqrt
instruction is available.
The pass is opt-in because at the moment it only handles sqrt.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@189097 91177308-0d34-0410-b5e6-96231b3b80d8
This gives a lot of love to the docs for the C API. Like Clang's
documentation, the C API is now organized into a Doxygen "module"
(LLVMC). Each C header file is a child of the main module. Some modules
(like Core) have a hierarchy of there own. The produced documentation is
thus better organized (before everything was in one monolithic list).
This patch also includes a lot of new documentation for APIs in Core.h.
It doesn't document them all, but is better than none. Function docs are
missing @param and @return annotation, but the documentation body now
commonly provides help details (like the expected llvm::Value sub-type
to expect).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@153157 91177308-0d34-0410-b5e6-96231b3b80d8