The messages were
"PR19753: Optimize comparisons with "ashr exact" of a constanst."
"Added support to optimize comparisons with "lshr exact" of a constant."
They were not correctly handling signed/unsigned operation differences,
causing pr19958.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@210393 91177308-0d34-0410-b5e6-96231b3b80d8
addrspacecast X addrspace(M)* to Y addrspace(N)*
-->
bitcast X addrspace(M)* to Y addrspace(M)*
addrspacecast Y addrspace(M)* to Y addrspace(N)*
Updat all affected tests and add several new tests in addrspacecast.ll.
This patch is based on http://reviews.llvm.org/D2186 (authored by Matt
Arsenault) with fixes and more tests.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@210375 91177308-0d34-0410-b5e6-96231b3b80d8
As discussed in cfe commit r210279, the correct little-endian
semantics for the vec_perm Altivec interfaces are implemented by
reversing the order of the input vectors and complementing the permute
control vector. This converts the desired permute from little endian
element order into the big endian element order that the underlying
PowerPC vperm instruction uses. This is represented with a
ppc_altivec_vperm intrinsic function.
The instruction combining pass contains code to convert a
ppc_altivec_vperm intrinsic into a vector shuffle operation when the
intrinsic has a permute control vector (mask) that is a constant.
However, the vector shuffle operation assumes that vector elements are
in natural order for their endianness, so for little endian code we
will get the wrong result with the existing transformation.
This patch reverses the semantic change to vec_perm that was performed
in altivec.h by once again swapping the input operands and
complementing the permute control vector, returning the element
ordering to little endian.
The correctness of this code is tested by the new perm.c test added in
a previous patch, and by other tests in the test suite that fail
without this patch.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@210282 91177308-0d34-0410-b5e6-96231b3b80d8
This patch implements two things:
1. If we know one number is positive and another is negative, we return true as
signed addition of two opposite signed numbers will never overflow.
2. Implemented TODO : If one of the operands only has one non-zero bit, and if
the other operand has a known-zero bit in a more significant place than it
(not including the sign bit) the ripple may go up to and fill the zero, but
won't change the sign. e.x - (x & ~4) + 1
We make sure that we are ignoring 0 at MSB.
Patch by Suyog Sarda.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@210186 91177308-0d34-0410-b5e6-96231b3b80d8
The code was actually correct. Sorry for the confusion. I have expanded the
comment saying why the analysis is valid to avoid me misunderstaning it
again in the future.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@210052 91177308-0d34-0410-b5e6-96231b3b80d8
This reverts commit r210029.
It was not correctly handling cases where LHS and RHS had multiple but different
sign bits.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@210048 91177308-0d34-0410-b5e6-96231b3b80d8
if ((x & C) == 0) x |= C becomes x |= C
if ((x & C) != 0) x ^= C becomes x &= ~C
if ((x & C) == 0) x ^= C becomes x |= C
if ((x & C) != 0) x &= ~C becomes x &= ~C
if ((x & C) == 0) x &= ~C becomes nothing
Differential Revision: http://reviews.llvm.org/D3777
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@210006 91177308-0d34-0410-b5e6-96231b3b80d8
original fix would actually trigger the *exact* same crasher as the
original bug for a different reason. Awesomesauce.
Working on test cases now, but wanted to get bots healthier.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@209860 91177308-0d34-0410-b5e6-96231b3b80d8
across PHI nodes. The code was computing the Idxs from the 'GEP'
variable's indices when what it wanted was Op1's indices. This caused an
ASan heap-overflow for me that pin pointed the issue when Op1 had more
indices than GEP did. =] I'll let Louis add a specific test case for
this if he wants.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@209857 91177308-0d34-0410-b5e6-96231b3b80d8
Currently LLVM will generally merge GEPs. This allows backends to use more
complex addressing modes. In some cases this is not happening because there
is PHI inbetween the two GEPs:
GEP1--\
|-->PHI1-->GEP3
GEP2--/
This patch checks to see if GEP1 and GEP2 are similiar enough that they can be
cloned (GEP12) in GEP3's BB, allowing GEP->GEP merging (GEP123):
GEP1--\ --\ --\
|-->PHI1-->GEP3 ==> |-->PHI2->GEP12->GEP3 == > |-->PHI2->GEP123
GEP2--/ --/ --/
This also breaks certain use chains that are preventing GEP->GEP merges that the
the existing instcombine would merge otherwise.
Tests included.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@209843 91177308-0d34-0410-b5e6-96231b3b80d8
This reverts commit r209762, bringing back r209746. It was not responsible for the libc++ build failure
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@209776 91177308-0d34-0410-b5e6-96231b3b80d8
This reverts commit r209746.
It looks it is causing a crash while building libcxx. I am trying to get a
reduced testcase.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@209762 91177308-0d34-0410-b5e6-96231b3b80d8
Currently LLVM will generally merge GEPs. This allows backends to use more
complex addressing modes. In some cases this is not happening because there
is PHI inbetween the two GEPs:
GEP1--\
|-->PHI1-->GEP3
GEP2--/
This patch checks to see if GEP1 and GEP2 are similiar enough that they can be
cloned (GEP12) in GEP3's BB, allowing GEP->GEP merging (GEP123):
GEP1--\ --\ --\
|-->PHI1-->GEP3 ==> |-->PHI2->GEP12->GEP3 == > |-->PHI2->GEP123
GEP2--/ --/ --/
This also breaks certain use chains that are preventing GEP->GEP merges that the
the existing instcombine would merge otherwise.
Tests included.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@209755 91177308-0d34-0410-b5e6-96231b3b80d8
This patch implements two things:
1. If we know one number is positive and another is negative, we return true as
signed addition of two opposite signed numbers will never overflow.
2. Implemented TODO : If one of the operands only has one non-zero bit, and if
the other operand has a known-zero bit in a more significant place than it
(not including the sign bit) the ripple may go up to and fill the zero, but
won't change the sign. e.x - (x & ~4) + 1
We make sure that we are ignoring 0 at MSB.
Patch by Suyog Sarda.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@209746 91177308-0d34-0410-b5e6-96231b3b80d8
Detected by Daniel Jasper, Ilia Filippov, and Andrea Di Biagio
Fixed the argument order to select (the mask semantics to blendv* are the
inverse of select) and fixed the tests
Added parenthesis to the assert condition
Ran clang-format
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@209667 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
Implemented an InstCombine transformation that takes a blendv* intrinsic
call and translates it into an IR select, if the mask is constant.
This will eventually get lowered into blends with immediates if possible,
or pblendvb (with an option to further optimize if we can transform the
pblendvb into a blend+immediate instruction, depending on the selector).
It will also enable optimizations by the IR passes, which give up on
sight of the intrinsic.
Both the transformation and the lowering of its result to asm got shiny
new tests.
The transformation is a bit convoluted because of blendvp[sd]'s
definition:
Its mask is a floating point value! This forces us to convert it and get
the highest bit. I suppose this happened because the mask has type
__m128 in Intel's intrinsic and v4sf (for blendps) in gcc's builtin.
I will send an email to llvm-dev to discuss if we want to change this or
not.
Reviewers: grosbach, delena, nadav
Differential Revision: http://reviews.llvm.org/D3859
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@209643 91177308-0d34-0410-b5e6-96231b3b80d8
This commit starts with a "git mv ARM64 AArch64" and continues out
from there, renaming the C++ classes, intrinsics, and other
target-local objects for consistency.
"ARM64" test directories are also moved, and tests that began their
life in ARM64 use an arm64 triple, those from AArch64 use an aarch64
triple. Both should be equivalent though.
This finishes the AArch64 merge, and everyone should feel free to
continue committing as normal now.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@209577 91177308-0d34-0410-b5e6-96231b3b80d8
This patch fixes 3 issues introduced by r209049 that only showed up in on
the sanitizer buildbots. One was a typo in a compare. The other is a check to
confirm that the single differing value in the two incoming GEPs is the same
type. The final issue was the the IRBuilder under some circumstances would
build PHIs in the middle of the block.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@209065 91177308-0d34-0410-b5e6-96231b3b80d8
Currently LLVM will generally merge GEPs. This allows backends to use more
complex addressing modes. In some cases this is not happening because there
is PHI inbetween the two GEPs:
GEP1--\
|-->PHI1-->GEP3
GEP2--/
This patch checks to see if GEP1 and GEP2 are similiar enough that they can be
cloned (GEP12) in GEP3's BB, allowing GEP->GEP merging (GEP123):
GEP1--\ --\ --\
|-->PHI1-->GEP3 ==> |-->PHI2->GEP12->GEP3 == > |-->PHI2->GEP123
GEP2--/ --/ --/
This also breaks certain use chains that are preventing GEP->GEP merges that the
the existing instcombine would merge otherwise.
Tests included.
rdar://15547484
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@209049 91177308-0d34-0410-b5e6-96231b3b80d8
if ((x & C) == 0) x |= C becomes x |= C
if ((x & C) != 0) x ^= C becomes x &= ~C
if ((x & C) == 0) x ^= C becomes x |= C
if ((x & C) != 0) x &= ~C becomes x &= ~C
if ((x & C) == 0) x &= ~C becomes nothing
Z3 Verifications code for above transform
http://rise4fun.com/Z3/Pmsh
Differential Revision: http://reviews.llvm.org/D3717
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@208848 91177308-0d34-0410-b5e6-96231b3b80d8
In transformation:
BinOp(shuffle(v1,undef), shuffle(v2,undef)) -> shuffle(BinOp(v1, v2),undef)
type of the undef argument must be same as type of BinOp.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@208531 91177308-0d34-0410-b5e6-96231b3b80d8
Do not apply transformation:
BinOp(shuffle(v1), shuffle(v2)) -> shuffle(BinOp(v1, v2))
if operands v1 and v2 are of different size.
This change fixes PR19717, which was caused by r208488.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@208518 91177308-0d34-0410-b5e6-96231b3b80d8
This patch enables transformations:
BinOp(shuffle(v1), shuffle(v2)) -> shuffle(BinOp(v1, v2))
BinOp(shuffle(v1), const1) -> shuffle(BinOp, const2)
They allow to eliminate extra shuffles in some cases.
Differential Revision: http://reviews.llvm.org/D3525
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@208488 91177308-0d34-0410-b5e6-96231b3b80d8
The instcomine logic to handle vpermilvar's pd and 256 variants was incorrect.
The _256 variants have indexes into the individual 128 bit lanes and in all
cases it also has to mask out unused bits.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@207577 91177308-0d34-0410-b5e6-96231b3b80d8